Multi-parameter streaming outlier detection

Theodoros Toliopoulos, A. Gounaris
{"title":"Multi-parameter streaming outlier detection","authors":"Theodoros Toliopoulos, A. Gounaris","doi":"10.1145/3350546.3352520","DOIUrl":null,"url":null,"abstract":"Distance-based outlier detection techniques is a wide-spread methodology for anomaly detection. Despite their effectiveness, a main limitation is that they heavily rely on the dataset and the parameters chosen in order to establish the right status of each data point. These parameters typically include, but are not limited to, the neighborhood radius and threshold. In continuous streaming environments, the need for real-time analysis does not permit for an algorithm to be restarted multiple times with different parameters until the right combination is specified. This gives rise to the need for one technique that combines an arbitrary number of parameterizations with the use of minimal yet sufficient computer resources. In this work we both compare the state-of-the-art techniques for handling multiple queries in distance-based outlier detection algorithms and we propose a novel technique for multi-parameter distance-based outlier detection tailored to distributed continuous streaming environments, such as Spark and Flink. CCS CONCEPTS • Information systems $\\rightarrow$Data stream mining;• Computing methodologies$\\rightarrow$Anomaly detection; Massively parallel algorithms.","PeriodicalId":171168,"journal":{"name":"2019 IEEE/WIC/ACM International Conference on Web Intelligence (WI)","volume":"108 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/WIC/ACM International Conference on Web Intelligence (WI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3350546.3352520","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Distance-based outlier detection techniques is a wide-spread methodology for anomaly detection. Despite their effectiveness, a main limitation is that they heavily rely on the dataset and the parameters chosen in order to establish the right status of each data point. These parameters typically include, but are not limited to, the neighborhood radius and threshold. In continuous streaming environments, the need for real-time analysis does not permit for an algorithm to be restarted multiple times with different parameters until the right combination is specified. This gives rise to the need for one technique that combines an arbitrary number of parameterizations with the use of minimal yet sufficient computer resources. In this work we both compare the state-of-the-art techniques for handling multiple queries in distance-based outlier detection algorithms and we propose a novel technique for multi-parameter distance-based outlier detection tailored to distributed continuous streaming environments, such as Spark and Flink. CCS CONCEPTS • Information systems $\rightarrow$Data stream mining;• Computing methodologies$\rightarrow$Anomaly detection; Massively parallel algorithms.
多参数流异常点检测
基于距离的离群点检测技术是一种广泛应用的异常检测方法。尽管它们很有效,但一个主要的限制是它们严重依赖于数据集和选择的参数,以便建立每个数据点的正确状态。这些参数通常包括但不限于邻域半径和阈值。在连续流环境中,对实时分析的需求不允许使用不同的参数多次重新启动算法,直到指定正确的组合。这就产生了对一种技术的需求,这种技术将任意数量的参数化与使用最少但足够的计算机资源相结合。在这项工作中,我们比较了基于距离的离群点检测算法中处理多个查询的最先进技术,并提出了一种针对分布式连续流环境(如Spark和Flink)的多参数基于距离的离群点检测的新技术。数据流挖掘;计算方法;异常检测;大规模并行算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信