Web user profiling using hierarchical clustering with improved similarity measure

N. Algiriyage, Sanath Jayasena, G. Dias
{"title":"Web user profiling using hierarchical clustering with improved similarity measure","authors":"N. Algiriyage, Sanath Jayasena, G. Dias","doi":"10.1109/MERCON.2015.7112362","DOIUrl":null,"url":null,"abstract":"Web user profiling targets grouping users in to clusters with similar interests. Web sites are attracted by many visitors and gaining insight to the patterns of access leaves lot of information. Web server access log files record every single request processed by web site visitors. Applying web usage mining techniques allow to identify interesting patterns. In this paper we have improved the similarity measure proposed by Velásquez et al. [1] and used it as the distance measure in an agglomerative hierarchical clustering for a data set from an online banking web site. To generate profiles, frequent item set mining is applied over the clusters. Our results show that proper visitor clustering can be achieved with the improved similarity measure.","PeriodicalId":373492,"journal":{"name":"2015 Moratuwa Engineering Research Conference (MERCon)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Moratuwa Engineering Research Conference (MERCon)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MERCON.2015.7112362","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Web user profiling targets grouping users in to clusters with similar interests. Web sites are attracted by many visitors and gaining insight to the patterns of access leaves lot of information. Web server access log files record every single request processed by web site visitors. Applying web usage mining techniques allow to identify interesting patterns. In this paper we have improved the similarity measure proposed by Velásquez et al. [1] and used it as the distance measure in an agglomerative hierarchical clustering for a data set from an online banking web site. To generate profiles, frequent item set mining is applied over the clusters. Our results show that proper visitor clustering can be achieved with the improved similarity measure.
使用具有改进的相似性度量的分层聚类的Web用户分析
Web用户分析的目标是将用户分组到具有相似兴趣的集群中。Web站点被许多访问者所吸引,对访问模式的洞察留下了大量信息。Web服务器访问日志文件记录了网站访问者处理的每一个请求。应用web使用挖掘技术可以识别有趣的模式。在本文中,我们改进了Velásquez等人提出的相似度度量,并将其用作来自网上银行网站的数据集的凝聚分层聚类中的距离度量。为了生成概要文件,在集群上应用频繁的项目集挖掘。研究结果表明,改进的相似度度量方法可以实现适当的访问者聚类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信