Multi-Modal Cross-Attention Learning on Detecting Anomalies of Electrical Equipment

Zongluo Zhao, Zhixin Zhao, Qiangqiang Li, Jiaxi Zhuang, Xiaoming Ju
{"title":"Multi-Modal Cross-Attention Learning on Detecting Anomalies of Electrical Equipment","authors":"Zongluo Zhao, Zhixin Zhao, Qiangqiang Li, Jiaxi Zhuang, Xiaoming Ju","doi":"10.1109/prmvia58252.2023.00030","DOIUrl":null,"url":null,"abstract":"Currently, in field of electrical power system, techniques of anomalies detection are constantly innovating. Applications of neural network on processing of patrol images spare analyzers plenty of time, but subject to the relatively low resolution of the object contour under heavy weather, results do not show well on recognition of anomalies in electrical equipment, while multi-modal methods can import more information to the objects detected, thus may improve the success rate of capture. In this paper, we propose a feature-fusion model which uses cross-attention learning method to augment features of the anomalies with text of corresponding description and environment condition. After comparing experiments on self-constructed datasets of images and text, our model has achieved the state of art on multiple metrics. More importantly, it is found that adding additional features to the model can achieve better results through ablation experiments, which shows our model is scalable for a better solution.","PeriodicalId":221346,"journal":{"name":"2023 International Conference on Pattern Recognition, Machine Vision and Intelligent Algorithms (PRMVIA)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Pattern Recognition, Machine Vision and Intelligent Algorithms (PRMVIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/prmvia58252.2023.00030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Currently, in field of electrical power system, techniques of anomalies detection are constantly innovating. Applications of neural network on processing of patrol images spare analyzers plenty of time, but subject to the relatively low resolution of the object contour under heavy weather, results do not show well on recognition of anomalies in electrical equipment, while multi-modal methods can import more information to the objects detected, thus may improve the success rate of capture. In this paper, we propose a feature-fusion model which uses cross-attention learning method to augment features of the anomalies with text of corresponding description and environment condition. After comparing experiments on self-constructed datasets of images and text, our model has achieved the state of art on multiple metrics. More importantly, it is found that adding additional features to the model can achieve better results through ablation experiments, which shows our model is scalable for a better solution.
电气设备异常检测的多模态交叉注意学习
目前,在电力系统领域,异常检测技术不断创新。神经网络在巡逻图像处理中的应用为分析人员节省了大量的时间,但由于恶劣天气下物体轮廓分辨率相对较低,结果对电气设备异常的识别效果不佳,而多模态方法可以将更多的信息导入到检测到的物体中,从而可以提高捕获成功率。本文提出了一种特征融合模型,该模型采用交叉注意学习的方法,用相应描述和环境条件的文本增强异常特征。通过对自构建的图像和文本数据集的实验比较,我们的模型在多个指标上达到了最先进的水平。更重要的是,通过烧蚀实验发现,在模型中添加额外的特征可以获得更好的结果,这表明我们的模型具有可扩展性,可以获得更好的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信