Video to Text Study using an Encoder-Decoder Networks Approach

Carlos Ismael Orozco, M. Buemi, J. Jacobo-Berlles
{"title":"Video to Text Study using an Encoder-Decoder Networks Approach","authors":"Carlos Ismael Orozco, M. Buemi, J. Jacobo-Berlles","doi":"10.1109/SCCC.2018.8705254","DOIUrl":null,"url":null,"abstract":"The automatic generation of video description is currently a topic of interest in computer vision due to applications such as web indexation, video description for people with visual disabilities, among others. In this work we present a Neural Network architecture Encoder-Decoder. First, a Convolutional Neural Network 3D extracts the features of the input video. Then, an Long Short-Term Memory decodes the vector to automatically generate the description of the video. To perform the training and testing we use the Microsoft Video Description Corpus data set (MSVD). Evaluate the performance of our system using the challenge of COCO Image Captioning Challenge. We obtain as results 0.3984, 0.2941 and 0.5052 for the BLEU, METEOR and CIDEr metrics respectively. Competitive results compared with certificates in the bibliography.","PeriodicalId":235495,"journal":{"name":"2018 37th International Conference of the Chilean Computer Science Society (SCCC)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 37th International Conference of the Chilean Computer Science Society (SCCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCCC.2018.8705254","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The automatic generation of video description is currently a topic of interest in computer vision due to applications such as web indexation, video description for people with visual disabilities, among others. In this work we present a Neural Network architecture Encoder-Decoder. First, a Convolutional Neural Network 3D extracts the features of the input video. Then, an Long Short-Term Memory decodes the vector to automatically generate the description of the video. To perform the training and testing we use the Microsoft Video Description Corpus data set (MSVD). Evaluate the performance of our system using the challenge of COCO Image Captioning Challenge. We obtain as results 0.3984, 0.2941 and 0.5052 for the BLEU, METEOR and CIDEr metrics respectively. Competitive results compared with certificates in the bibliography.
使用编码器-解码器网络方法进行视频到文本的学习
由于web索引、视障人士视频描述等应用,视频描述的自动生成目前是计算机视觉领域的一个热门话题。在这项工作中,我们提出了一个神经网络结构的编码器-解码器。首先,卷积神经网络3D提取输入视频的特征。然后,长短期记忆对矢量进行解码,自动生成视频描述。为了进行训练和测试,我们使用微软视频描述语料库数据集(MSVD)。使用COCO图像字幕挑战来评估我们系统的性能。BLEU、METEOR和CIDEr指标的结果分别为0.3984、0.2941和0.5052。与书目中证书的竞争结果比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信