Sparse Source EEG Imaging with the Variational Garrote

Sofie Therese Hansen, Carsten Stahlhut, L. K. Hansen
{"title":"Sparse Source EEG Imaging with the Variational Garrote","authors":"Sofie Therese Hansen, Carsten Stahlhut, L. K. Hansen","doi":"10.1109/PRNI.2013.36","DOIUrl":null,"url":null,"abstract":"EEG imaging, the estimation of the cortical source distribution from scalp electrode measurements, poses an extremely ill-posed inverse problem. Recent work by Delorme et al. (2012) supports the hypothesis that distributed source solutions are sparse. We show that direct search for sparse solutions as implemented by the Variational Garrote (Kappen, 2011) provides excellent estimates compared with other widely used schemes, is computationally attractive, and by its separation of 'where' and 'what' degrees of freedom paves the road for the introduction of genuine prior information.","PeriodicalId":144007,"journal":{"name":"2013 International Workshop on Pattern Recognition in Neuroimaging","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Workshop on Pattern Recognition in Neuroimaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PRNI.2013.36","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

EEG imaging, the estimation of the cortical source distribution from scalp electrode measurements, poses an extremely ill-posed inverse problem. Recent work by Delorme et al. (2012) supports the hypothesis that distributed source solutions are sparse. We show that direct search for sparse solutions as implemented by the Variational Garrote (Kappen, 2011) provides excellent estimates compared with other widely used schemes, is computationally attractive, and by its separation of 'where' and 'what' degrees of freedom paves the road for the introduction of genuine prior information.
稀疏源脑电图变喉成像
脑电成像,从头皮电极测量中估计皮层源分布,提出了一个极不病态的逆问题。Delorme等人(2012)最近的工作支持分布式源解决方案是稀疏的假设。我们表明,与其他广泛使用的方案相比,由变分Garrote (Kappen, 2011)实现的稀疏解的直接搜索提供了很好的估计,在计算上很有吸引力,并且通过分离“在哪里”和“什么”自由度为引入真正的先验信息铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信