Johannes Rullof, K. Lambers, C. Dick, U. Blieske, J. Hadji-Minaglou, F. Scholzen
{"title":"Experimental studies on the development of a solar hybrid module with an aluminum microchannel evaporator","authors":"Johannes Rullof, K. Lambers, C. Dick, U. Blieske, J. Hadji-Minaglou, F. Scholzen","doi":"10.1109/IESC.2016.7569505","DOIUrl":null,"url":null,"abstract":"In recent years, the possibility to combine photovoltaics (PV) and solar thermal collectors into one hybrid module (PVT-module) has been increasingly investigated. PVT-modules produce thermal and electrical energy at the same time. As the efficiency of a photovoltaic module decreases with temperature, the temperature of the heat transfer media is often limited to about 30 °C and the PVT-module is combined with a heat pump, which increases the temperature on the “warm side”. This paper deals with a PVT-module, which combines a microchannel based evaporator of a CO2 (R744) heat pump with a PV panel (PVT-direct). The PVT-direct overall system is reduced to the refrigerant circuit due to the direct refrigerant expansion in the PVT-module. A conventional PVT heat pump system has an additional glycol-water circuit. Since a pump and an additional heat exchanger for the secondary cycle were omitted, the system has increased efficiency. Due to lower module temperatures, the increase of the photovoltaic efficiency is a further advantage of the PVT-direct-module. To prove the feasibility of the PVT-direct heat pump system, the Cologne Institute for Renewable Energy (CIRE) is developing and modeling a test facility for this purpose within the research project “PVT-direkt”. Furthermore, a functional PVT-direct-module with a microchannel based evaporator was designed and built. Much importance has been given to experimental studies under laboratory conditions in order to investigate (1) the adjustment of the functionality and layout of the PVT-direct-module for characterizing the joining of brazed joints in aluminum microchannel evaporators and (2) the influence of the backside aluminum plate of the PVT-direct-module regarding leakage currents and parasitic capacitances. The overall results obtained in these experimental studies are analyzed in this paper.","PeriodicalId":158346,"journal":{"name":"2016 International Energy and Sustainability Conference (IESC)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Energy and Sustainability Conference (IESC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IESC.2016.7569505","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
In recent years, the possibility to combine photovoltaics (PV) and solar thermal collectors into one hybrid module (PVT-module) has been increasingly investigated. PVT-modules produce thermal and electrical energy at the same time. As the efficiency of a photovoltaic module decreases with temperature, the temperature of the heat transfer media is often limited to about 30 °C and the PVT-module is combined with a heat pump, which increases the temperature on the “warm side”. This paper deals with a PVT-module, which combines a microchannel based evaporator of a CO2 (R744) heat pump with a PV panel (PVT-direct). The PVT-direct overall system is reduced to the refrigerant circuit due to the direct refrigerant expansion in the PVT-module. A conventional PVT heat pump system has an additional glycol-water circuit. Since a pump and an additional heat exchanger for the secondary cycle were omitted, the system has increased efficiency. Due to lower module temperatures, the increase of the photovoltaic efficiency is a further advantage of the PVT-direct-module. To prove the feasibility of the PVT-direct heat pump system, the Cologne Institute for Renewable Energy (CIRE) is developing and modeling a test facility for this purpose within the research project “PVT-direkt”. Furthermore, a functional PVT-direct-module with a microchannel based evaporator was designed and built. Much importance has been given to experimental studies under laboratory conditions in order to investigate (1) the adjustment of the functionality and layout of the PVT-direct-module for characterizing the joining of brazed joints in aluminum microchannel evaporators and (2) the influence of the backside aluminum plate of the PVT-direct-module regarding leakage currents and parasitic capacitances. The overall results obtained in these experimental studies are analyzed in this paper.