Runtime Steering of Molecular Dynamics Simulations Through In Situ Analysis and Annotation of Collective Variables

Silvina Caíno-Lores, M. Cuendet, Jack D. Marquez, E. Kots, Trilce Estrada, E. Deelman, Harel Weinstein, M. Taufer
{"title":"Runtime Steering of Molecular Dynamics Simulations Through In Situ Analysis and Annotation of Collective Variables","authors":"Silvina Caíno-Lores, M. Cuendet, Jack D. Marquez, E. Kots, Trilce Estrada, E. Deelman, Harel Weinstein, M. Taufer","doi":"10.1145/3592979.3593420","DOIUrl":null,"url":null,"abstract":"This paper targets one of the most common simulations on petascale and, very likely, on exascale machines: molecular dynamics (MD) simulations studying the (classical) time evolution of a molecular system at atomic resolution. Specifically, this work addresses the data challenges of MD simulations at exascale through (1) the creation of a data analysis method based on a suite of advanced collective variables (CVs) selected for annotation of structural molecular properties and capturing rare conformational events at runtime, (2) the definition of an in situ framework to automatically identify the frames where the rare events occur during an MD simulation and (3) the integration of both method and framework into two MD workflows for the study of early termination or termination and restart of a benchmark molecular system for protein folding ---the Fs peptide system (Ace-A_5(AAARA)_3A-NME)--- using Summit. The approach achieves faster exploration of the conformational space compared to extensive ensemble simulations. Specifically, our in situ framework with early termination alone achieves 99.6% coverage of the reference conformational space for the Fs peptide with just 60% of the MD steps otherwise used for a traditional execution of the MD simulation. Annotation-based restart allows us to cover 94.6% of the conformational space, just running 50% of the overall MD steps.","PeriodicalId":174137,"journal":{"name":"Proceedings of the Platform for Advanced Scientific Computing Conference","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Platform for Advanced Scientific Computing Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3592979.3593420","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper targets one of the most common simulations on petascale and, very likely, on exascale machines: molecular dynamics (MD) simulations studying the (classical) time evolution of a molecular system at atomic resolution. Specifically, this work addresses the data challenges of MD simulations at exascale through (1) the creation of a data analysis method based on a suite of advanced collective variables (CVs) selected for annotation of structural molecular properties and capturing rare conformational events at runtime, (2) the definition of an in situ framework to automatically identify the frames where the rare events occur during an MD simulation and (3) the integration of both method and framework into two MD workflows for the study of early termination or termination and restart of a benchmark molecular system for protein folding ---the Fs peptide system (Ace-A_5(AAARA)_3A-NME)--- using Summit. The approach achieves faster exploration of the conformational space compared to extensive ensemble simulations. Specifically, our in situ framework with early termination alone achieves 99.6% coverage of the reference conformational space for the Fs peptide with just 60% of the MD steps otherwise used for a traditional execution of the MD simulation. Annotation-based restart allows us to cover 94.6% of the conformational space, just running 50% of the overall MD steps.
通过现场分析和集体变量注释的分子动力学模拟运行时控制
本文的目标是在千兆级和很可能在百亿亿级机器上最常见的模拟之一:分子动力学(MD)模拟,研究分子系统在原子分辨率下的(经典)时间演化。具体来说,这项工作通过以下方式解决了百万兆级MD模拟的数据挑战(1)创建了一种基于一套高级集体变量(cv)的数据分析方法,该方法被选中用于注释结构分子特性并在运行时捕获罕见的构象事件;(2)定义一个原位框架,以自动识别在MD模拟过程中发生罕见事件的框架;(3)将方法和框架集成到两个MD工作流程中,用于研究蛋白质折叠的基准分子系统的早期终止或终止和重新启动——Fs肽系统(Ace-A_5(AAARA)_3A-NME)——使用Summit。与广泛的集成模拟相比,该方法可以更快地探索构象空间。具体而言,我们的早期终止原位框架仅实现了Fs肽参考构象空间99.6%的覆盖率,而传统的MD模拟执行仅使用60%的MD步骤。基于注释的重新启动允许我们覆盖94.6%的构象空间,只运行总MD步骤的50%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信