Deep Learning Based Modified Message Passing Algorithm for Sparse Code Multiple Access

Lanping Li, Xiaohu Tang, C. Tellambura
{"title":"Deep Learning Based Modified Message Passing Algorithm for Sparse Code Multiple Access","authors":"Lanping Li, Xiaohu Tang, C. Tellambura","doi":"10.1109/IWSDA46143.2019.8966120","DOIUrl":null,"url":null,"abstract":"Shuffled message passing algorithm (SMPA) is a serial variant of message passing algorithm (MPA) for sparse code multiple access (SCMA) signal detection, which accelerates the convergence rate of MPA. However, SMPA still achieves the near-optimal performance due to the effect of cycles in the factor graph. In the paper, we propose to optimize the weights assigned to the edges of the factor graph by unfolding SMPA as layers of deep neural network (DNN). We consider the weights as network parameters and then train the network offline to obtain weights which can minimize the loss function. With simulations, we show that DNN based SMPA (DNN-SMPA) outperforms SMPA in terms of bit-error-rate (BER) for the same level of computational complexity.","PeriodicalId":326214,"journal":{"name":"2019 Ninth International Workshop on Signal Design and its Applications in Communications (IWSDA)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Ninth International Workshop on Signal Design and its Applications in Communications (IWSDA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWSDA46143.2019.8966120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Shuffled message passing algorithm (SMPA) is a serial variant of message passing algorithm (MPA) for sparse code multiple access (SCMA) signal detection, which accelerates the convergence rate of MPA. However, SMPA still achieves the near-optimal performance due to the effect of cycles in the factor graph. In the paper, we propose to optimize the weights assigned to the edges of the factor graph by unfolding SMPA as layers of deep neural network (DNN). We consider the weights as network parameters and then train the network offline to obtain weights which can minimize the loss function. With simulations, we show that DNN based SMPA (DNN-SMPA) outperforms SMPA in terms of bit-error-rate (BER) for the same level of computational complexity.
基于深度学习的改进稀疏码多址消息传递算法
shuffle message passing algorithm (SMPA)是用于稀疏码多址(SCMA)信号检测的消息传递算法(MPA)的串行变体,它加快了MPA的收敛速度。然而,由于因子图中循环的影响,SMPA仍然达到了接近最优的性能。在本文中,我们提出通过将SMPA展开为深度神经网络(DNN)层来优化分配给因子图边缘的权重。我们将权值作为网络参数,然后对网络进行离线训练,以获得使损失函数最小的权值。通过模拟,我们表明基于DNN的SMPA (DNN-SMPA)在相同计算复杂度水平下的误码率(BER)方面优于SMPA。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信