Hierarchical fuzzy system modeling by Genetic and Bacterial Programming approaches

K. Balázs, János Botzheim, L. Kóczy
{"title":"Hierarchical fuzzy system modeling by Genetic and Bacterial Programming approaches","authors":"K. Balázs, János Botzheim, L. Kóczy","doi":"10.1109/FUZZY.2010.5584220","DOIUrl":null,"url":null,"abstract":"In this paper a method is proposed for constructing hierarchical fuzzy rule bases in order to model black box systems defined by input-output pairs, i.e. to solve supervised machine learning problems. The resultant hierarchical rule base is the knowledge base, which is constructed by using structure constructing evolutionary techniques, namely, Genetic and Bacterial Programming Algorithms. Applying hierarchical fuzzy rule bases is a way of reducing the complexity of the knowledge base, whereas evolutionary methods ensure a relatively efficient learning process. This is the reason of the investigation of this combination.","PeriodicalId":377799,"journal":{"name":"International Conference on Fuzzy Systems","volume":"143 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.2010.5584220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

In this paper a method is proposed for constructing hierarchical fuzzy rule bases in order to model black box systems defined by input-output pairs, i.e. to solve supervised machine learning problems. The resultant hierarchical rule base is the knowledge base, which is constructed by using structure constructing evolutionary techniques, namely, Genetic and Bacterial Programming Algorithms. Applying hierarchical fuzzy rule bases is a way of reducing the complexity of the knowledge base, whereas evolutionary methods ensure a relatively efficient learning process. This is the reason of the investigation of this combination.
遗传和细菌规划方法的层次模糊系统建模
本文提出了一种构造层次模糊规则库的方法,用于对由输入输出对定义的黑箱系统建模,即解决有监督机器学习问题。所得到的分层规则库即知识库,该知识库采用结构构造进化技术,即遗传和细菌规划算法来构建。应用层次模糊规则库是降低知识库复杂性的一种方法,而进化方法则保证了相对高效的学习过程。这就是我们研究这一组合的原因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信