A Bayesian View of Frame Interpolation and a Comparison with Existing Motion Picture Effects Tools

A. Kokaram, Davinder Singh, Simon Robinson
{"title":"A Bayesian View of Frame Interpolation and a Comparison with Existing Motion Picture Effects Tools","authors":"A. Kokaram, Davinder Singh, Simon Robinson","doi":"10.1109/ICIP40778.2020.9191152","DOIUrl":null,"url":null,"abstract":"Frame interpolation is the process of synthesising a new frame in-between existing frames in an image sequence. It has emerged as a key module in motion picture effects. Previous work either relies on two frame interpolation based entirely on optic flow, or recently DNNs. This paper presents a new algorithm based on multiframe motion interpolation motivated in a Bayesian sense. We also present the first comparison using industrial toolkits used in the post production industry today. We find that the latest Convolutional Neural Network approaches do not significantly outperform explicit motion based techniques.","PeriodicalId":405734,"journal":{"name":"2020 IEEE International Conference on Image Processing (ICIP)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP40778.2020.9191152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Frame interpolation is the process of synthesising a new frame in-between existing frames in an image sequence. It has emerged as a key module in motion picture effects. Previous work either relies on two frame interpolation based entirely on optic flow, or recently DNNs. This paper presents a new algorithm based on multiframe motion interpolation motivated in a Bayesian sense. We also present the first comparison using industrial toolkits used in the post production industry today. We find that the latest Convolutional Neural Network approaches do not significantly outperform explicit motion based techniques.
帧插值的贝叶斯观点及与现有电影效果工具的比较
帧插值是在图像序列中现有帧之间合成新帧的过程。它已经成为电影特效的一个关键模块。以前的工作要么完全依赖于光流的两帧插值,要么是最近的深度神经网络。提出了一种基于贝叶斯驱动的多帧运动插值算法。我们还提出了使用工业工具包在后期制作行业今天使用的第一个比较。我们发现最新的卷积神经网络方法并没有明显优于基于显式运动的技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信