C. Vásquez, Stefano Enrique Romero, Jose Zapana, Jesus Paucar, T. Marini, B. Castañeda
{"title":"Automatic detection of lung ultrasound artifacts using a deep neural networks approach","authors":"C. Vásquez, Stefano Enrique Romero, Jose Zapana, Jesus Paucar, T. Marini, B. Castañeda","doi":"10.1117/12.2670456","DOIUrl":null,"url":null,"abstract":"The COVID-19 pandemic has challenged many of the healthcare systems around the world. Many patients who have been hospitalized due to this disease develop lung damage. In low and middle-income countries, people living in rural and remote areas have very limited access to adequate health care. Ultrasound is a safe, portable and accessible alternative; however, it has limitations such as being operator-dependent and requiring a trained professional. The use of lung ultrasound volume sweep imaging is a potential solution for this lack of physicians. In order to support this protocol, image processing together with machine learning is a potential methodology for an automatic lung damage screening system. In this paper we present an automatic detection of lung ultrasound artifacts using a Deep Neural Network, identifying clinical relevant artifacts such as pleural and A-lines contained in the ultrasound examination taken as part of the clinical screening in patients with suspected lung damage. The model achieved encouraging preliminary results such as sensitivity of 94% , specificity of 81%, and accuracy of 89% to identify the presence of A-lines. Finally, the present study could result in an alternative solution for an operator-independent lung damage screening in rural areas, leading to the integration of AI-based technology as a complementary tool for healthcare professionals.","PeriodicalId":147201,"journal":{"name":"Symposium on Medical Information Processing and Analysis","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symposium on Medical Information Processing and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2670456","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The COVID-19 pandemic has challenged many of the healthcare systems around the world. Many patients who have been hospitalized due to this disease develop lung damage. In low and middle-income countries, people living in rural and remote areas have very limited access to adequate health care. Ultrasound is a safe, portable and accessible alternative; however, it has limitations such as being operator-dependent and requiring a trained professional. The use of lung ultrasound volume sweep imaging is a potential solution for this lack of physicians. In order to support this protocol, image processing together with machine learning is a potential methodology for an automatic lung damage screening system. In this paper we present an automatic detection of lung ultrasound artifacts using a Deep Neural Network, identifying clinical relevant artifacts such as pleural and A-lines contained in the ultrasound examination taken as part of the clinical screening in patients with suspected lung damage. The model achieved encouraging preliminary results such as sensitivity of 94% , specificity of 81%, and accuracy of 89% to identify the presence of A-lines. Finally, the present study could result in an alternative solution for an operator-independent lung damage screening in rural areas, leading to the integration of AI-based technology as a complementary tool for healthcare professionals.