Feature selection algorithm for classification of multispectral MR images using constrained energy minimization

G. Lin, Wen-June Wang, Chuin-Mu Wang
{"title":"Feature selection algorithm for classification of multispectral MR images using constrained energy minimization","authors":"G. Lin, Wen-June Wang, Chuin-Mu Wang","doi":"10.1109/HIS.2010.5604768","DOIUrl":null,"url":null,"abstract":"This study proposes a new unsupervised approach for targets detection and classification in multispectral Magnetic Resonance (MR) images. The proposed method comprises two processes, namely Target Generation Process (TGP) and Constrained Energy Minimization (CEM). TGP is a fuzzy-set process that generates a set of potential targets from unknown information, and applies these targets to be desired targets in CEM Finally, the real MR images are used in the experiments to evaluate the effectiveness of proposed method. Experiment results reveal that the proposed method segments a multispectral MR image much more effectively than either FMRIB's Automated Segmentation Tool (FAST) or Fuzzy C-means (FC).","PeriodicalId":174618,"journal":{"name":"2010 10th International Conference on Hybrid Intelligent Systems","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 10th International Conference on Hybrid Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HIS.2010.5604768","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

This study proposes a new unsupervised approach for targets detection and classification in multispectral Magnetic Resonance (MR) images. The proposed method comprises two processes, namely Target Generation Process (TGP) and Constrained Energy Minimization (CEM). TGP is a fuzzy-set process that generates a set of potential targets from unknown information, and applies these targets to be desired targets in CEM Finally, the real MR images are used in the experiments to evaluate the effectiveness of proposed method. Experiment results reveal that the proposed method segments a multispectral MR image much more effectively than either FMRIB's Automated Segmentation Tool (FAST) or Fuzzy C-means (FC).
基于约束能量最小化的多光谱磁共振图像分类特征选择算法
提出了一种新的多光谱磁共振图像目标检测与分类的无监督方法。该方法包括目标生成过程(TGP)和约束能量最小化过程(CEM)两个过程。TGP是一个模糊集过程,它从未知信息中生成一组潜在目标,并将这些目标应用于CEM中的期望目标。最后,用真实的MR图像进行实验,以评估所提出方法的有效性。实验结果表明,该方法比FMRIB的自动分割工具(FAST)或模糊c均值(FC)更有效地分割了多光谱MR图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信