Fine-grained Action Detection in Untrimmed Surveillance Videos

Sathyanarayanan N. Aakur, Daniel Sawyer, Sudeep Sarkar
{"title":"Fine-grained Action Detection in Untrimmed Surveillance Videos","authors":"Sathyanarayanan N. Aakur, Daniel Sawyer, Sudeep Sarkar","doi":"10.1109/WACVW.2019.00014","DOIUrl":null,"url":null,"abstract":"Spatiotemporal localization of activities in untrimmed surveillance videos is a hard task, especially given the occurrence of simultaneous activities across different temporal and spatial scales. We tackle this problem using a cascaded region proposal and detection (CRPAD) framework implementing frame-level simultaneous action detection, followed by tracking. We propose the use of a frame-level spatial detection model based on advances in object detection and a temporal linking algorithm that models the temporal dynamics of the detected activities. We show results on the VIRAT dataset through the recent Activities in Extended Video (ActEV) challenge that is part of the TrecVID competition[1, 2].","PeriodicalId":254512,"journal":{"name":"2019 IEEE Winter Applications of Computer Vision Workshops (WACVW)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Winter Applications of Computer Vision Workshops (WACVW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACVW.2019.00014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Spatiotemporal localization of activities in untrimmed surveillance videos is a hard task, especially given the occurrence of simultaneous activities across different temporal and spatial scales. We tackle this problem using a cascaded region proposal and detection (CRPAD) framework implementing frame-level simultaneous action detection, followed by tracking. We propose the use of a frame-level spatial detection model based on advances in object detection and a temporal linking algorithm that models the temporal dynamics of the detected activities. We show results on the VIRAT dataset through the recent Activities in Extended Video (ActEV) challenge that is part of the TrecVID competition[1, 2].
未修剪监控视频中的细粒度动作检测
对未经修剪的监控视频中的活动进行时空定位是一项艰巨的任务,特别是考虑到在不同时空尺度上同时发生的活动。我们使用级联区域提议和检测(CRPAD)框架来解决这个问题,该框架实现帧级同步动作检测,然后进行跟踪。我们建议使用基于目标检测进展的帧级空间检测模型和时间链接算法,该算法模拟被检测活动的时间动态。我们通过最近的扩展视频活动(ActEV)挑战展示了VIRAT数据集上的结果,该挑战是trevid竞赛的一部分[1,2]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信