Heading Control of a Long-Endurance Insect-Scale Aerial Robot Powered by Soft Artificial Muscles

Y. Hsiao, Suhan Kim, Zhijian Ren, Yufeng Chen
{"title":"Heading Control of a Long-Endurance Insect-Scale Aerial Robot Powered by Soft Artificial Muscles","authors":"Y. Hsiao, Suhan Kim, Zhijian Ren, Yufeng Chen","doi":"10.1109/ICRA48891.2023.10161547","DOIUrl":null,"url":null,"abstract":"Aerial insects demonstrate fast and precise heading control when they perform body saccades and rapid escape maneuvers. While insect-scale micro-aerial-vehicles (IMAVs) have demonstrated early results on heading control, their flight endurance and heading angle tracking accuracy remain far inferior to that of natural fliers. In this work, we present a long endurance sub-gram aerial robot that can demonstrate effective heading control during hovering flight. Through using a tilted wing stroke-plane design, our robot demonstrates a 10-second flight where it tracks a desired yaw trajectory with maximum and root-mean-square (RMS) error of $\\boldsymbol{14.2^{\\circ}}$ and $\\boldsymbol{5.8}^{\\mathrm{o}}$. The new robot design requires 7% higher lift forces for enabling heading angle control, which creates higher stress on wing hinges and adversely influences robot endurance. To address this challenge, we developed novel 3-layered wing hinges that exhibit 1.82 times improvement of lifetime. With the new wing hinges, our robot demonstrates a 40-second hovering flight - the longest among existing sub-gram IMAVs. These results represent substantial improvement of flight capabilities in soft-actuated IMAVs, showing the potential of operating these insect-like fliers in cluttered natural environments.","PeriodicalId":360533,"journal":{"name":"2023 IEEE International Conference on Robotics and Automation (ICRA)","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRA48891.2023.10161547","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Aerial insects demonstrate fast and precise heading control when they perform body saccades and rapid escape maneuvers. While insect-scale micro-aerial-vehicles (IMAVs) have demonstrated early results on heading control, their flight endurance and heading angle tracking accuracy remain far inferior to that of natural fliers. In this work, we present a long endurance sub-gram aerial robot that can demonstrate effective heading control during hovering flight. Through using a tilted wing stroke-plane design, our robot demonstrates a 10-second flight where it tracks a desired yaw trajectory with maximum and root-mean-square (RMS) error of $\boldsymbol{14.2^{\circ}}$ and $\boldsymbol{5.8}^{\mathrm{o}}$. The new robot design requires 7% higher lift forces for enabling heading angle control, which creates higher stress on wing hinges and adversely influences robot endurance. To address this challenge, we developed novel 3-layered wing hinges that exhibit 1.82 times improvement of lifetime. With the new wing hinges, our robot demonstrates a 40-second hovering flight - the longest among existing sub-gram IMAVs. These results represent substantial improvement of flight capabilities in soft-actuated IMAVs, showing the potential of operating these insect-like fliers in cluttered natural environments.
柔性人工肌肉驱动的昆虫级长航时空中机器人的航向控制
空中昆虫在进行身体扫视和快速逃生动作时,表现出快速而精确的航向控制。虽然昆虫级微型飞行器在航向控制方面已经取得了初步成果,但它们的飞行续航力和航向角跟踪精度仍远不如天然飞行器。在这项工作中,我们提出了一种长航时亚克级空中机器人,它可以在悬停飞行中表现出有效的航向控制。通过使用倾斜的机翼冲程-平面设计,我们的机器人演示了10秒的飞行,它跟踪了期望的偏航轨迹,最大误差和均方根误差为$\boldsymbol{14.2^{\circ}}$和$\boldsymbol{5.8}^{\ maththrm {o}}$。新设计的机器人需要提高7%的升力来实现航向角控制,这会对机翼铰链产生更高的应力,并对机器人的耐久性产生不利影响。为了应对这一挑战,我们开发了新型的三层机翼铰链,其寿命提高了1.82倍。使用新的机翼铰链,我们的机器人展示了40秒的悬停飞行-这是现有的亚克imav中最长的。这些结果代表了软驱动imav飞行能力的实质性改进,显示了在混乱的自然环境中操作这些昆虫状飞行器的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信