A closer look: Small object detection in faster R-CNN

C. Eggert, Stephan Brehm, Anton Winschel, D. Zecha, R. Lienhart
{"title":"A closer look: Small object detection in faster R-CNN","authors":"C. Eggert, Stephan Brehm, Anton Winschel, D. Zecha, R. Lienhart","doi":"10.1109/ICME.2017.8019550","DOIUrl":null,"url":null,"abstract":"Faster R-CNN is a well-known approach for object detection which combines the generation of region proposals and their classification into a single pipeline. In this paper we apply Faster R-CNN to the task of company logo detection. Motivated by the weak performance of Faster R-CNN on small object instances, we perform a detailed examination of both the proposal and the classification stage, examining their behavior for a wide range of object sizes. Additionally, we look at the influence of feature map resolution on the performance of those stages. We introduce an improved scheme for generating anchor proposals and propose a modification to Faster R-CNN which leverages higher-resolution feature maps for small objects. We evaluate our approach on the Flicker data set improving the detection performance on small object instances.","PeriodicalId":330977,"journal":{"name":"2017 IEEE International Conference on Multimedia and Expo (ICME)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"87","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Multimedia and Expo (ICME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICME.2017.8019550","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 87

Abstract

Faster R-CNN is a well-known approach for object detection which combines the generation of region proposals and their classification into a single pipeline. In this paper we apply Faster R-CNN to the task of company logo detection. Motivated by the weak performance of Faster R-CNN on small object instances, we perform a detailed examination of both the proposal and the classification stage, examining their behavior for a wide range of object sizes. Additionally, we look at the influence of feature map resolution on the performance of those stages. We introduce an improved scheme for generating anchor proposals and propose a modification to Faster R-CNN which leverages higher-resolution feature maps for small objects. We evaluate our approach on the Flicker data set improving the detection performance on small object instances.
仔细观察:更快的R-CNN中的小物体检测
更快的R-CNN是一种众所周知的目标检测方法,它将区域建议的生成和分类结合到一个单一的管道中。在本文中,我们将Faster R-CNN应用于公司标志检测任务。由于Faster R-CNN在小对象实例上的弱性能,我们对提案和分类阶段进行了详细的检查,检查了它们在大范围对象大小下的行为。此外,我们还研究了特征图分辨率对这些阶段性能的影响。我们引入了一种改进的方案来生成锚点建议,并提出了对Faster R-CNN的修改,该方案利用了小对象的更高分辨率特征映射。我们在Flicker数据集上评估了我们的方法,提高了小对象实例的检测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信