PoHMM-based human action recognition

M. Á. Mendoza, N. P. D. L. Blanca, M. Marín-Jiménez
{"title":"PoHMM-based human action recognition","authors":"M. Á. Mendoza, N. P. D. L. Blanca, M. Marín-Jiménez","doi":"10.1109/WIAMIS.2009.5031438","DOIUrl":null,"url":null,"abstract":"In this paper we approach the human action recognition task using the Product of Hidden Markov Models (PoHMM). This approach allow us to get large state-space models from the normalized product of several simple HMMs. We compare this mixed graphical model with other directed multi-chain models like Coupled Hidden Markov Model (CHMM) or Factorial Hidden Markov Model (FHMM), so as with Conditional Random Field (CRF), a particular case of undirected graphical models. Our results show that PoHMM outperforms the classification score of these other space-state models on the KTH database using optical flow features.","PeriodicalId":233839,"journal":{"name":"2009 10th Workshop on Image Analysis for Multimedia Interactive Services","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 10th Workshop on Image Analysis for Multimedia Interactive Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WIAMIS.2009.5031438","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we approach the human action recognition task using the Product of Hidden Markov Models (PoHMM). This approach allow us to get large state-space models from the normalized product of several simple HMMs. We compare this mixed graphical model with other directed multi-chain models like Coupled Hidden Markov Model (CHMM) or Factorial Hidden Markov Model (FHMM), so as with Conditional Random Field (CRF), a particular case of undirected graphical models. Our results show that PoHMM outperforms the classification score of these other space-state models on the KTH database using optical flow features.
基于pohm的人体动作识别
本文采用隐马尔可夫模型积方法来研究人体动作识别问题。这种方法允许我们从几个简单hmm的标准化乘积中获得大型状态空间模型。我们将这种混合图形模型与其他有向多链模型进行比较,如耦合隐马尔可夫模型(CHMM)或阶乘隐马尔可夫模型(FHMM),以及条件随机场(CRF),这是无向图形模型的一种特殊情况。我们的研究结果表明,PoHMM使用光流特征在KTH数据库上优于这些其他空间状态模型的分类分数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信