Modulation-feature based textured image segmentation using curve evolution

Iasonas Kokkinos, Georgios Evangelopoulos, P. Maragos
{"title":"Modulation-feature based textured image segmentation using curve evolution","authors":"Iasonas Kokkinos, Georgios Evangelopoulos, P. Maragos","doi":"10.1109/ICIP.2004.1419520","DOIUrl":null,"url":null,"abstract":"In this paper we incorporate recent results from AM-FM models for texture analysis into the variational model of image segmentation and examine the potential benefits of using the combination of these two approaches for texture segmentation. Using the dominant components analysis (DCA) technique we obtain a low-dimensional, yet rich texture feature vector that proves to be useful for texture segmentation. We use an unsupervised scheme for texture segmentation, where only the number of regions is known a-priori. Experimental results on both synthetic and challenging real-world images demonstrate the potential of the proposed combination.","PeriodicalId":184798,"journal":{"name":"2004 International Conference on Image Processing, 2004. ICIP '04.","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2004 International Conference on Image Processing, 2004. ICIP '04.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2004.1419520","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

In this paper we incorporate recent results from AM-FM models for texture analysis into the variational model of image segmentation and examine the potential benefits of using the combination of these two approaches for texture segmentation. Using the dominant components analysis (DCA) technique we obtain a low-dimensional, yet rich texture feature vector that proves to be useful for texture segmentation. We use an unsupervised scheme for texture segmentation, where only the number of regions is known a-priori. Experimental results on both synthetic and challenging real-world images demonstrate the potential of the proposed combination.
基于调制特征的曲线演化纹理图像分割
在本文中,我们将AM-FM纹理分析模型的最新结果纳入图像分割的变分模型中,并研究了将这两种方法结合使用进行纹理分割的潜在好处。利用主成分分析(DCA)技术,我们得到了一个低维但丰富的纹理特征向量,证明了它对纹理分割是有用的。我们使用无监督的纹理分割方案,其中只有区域的数量是已知的先验。在合成图像和具有挑战性的真实世界图像上的实验结果表明了所提出的组合的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信