Distance-based Disagreement Classifiers Combination

C. Freitas, J. Carvalho, José Josemar de Oliveira, S. B. K. Aires, R. Sabourin
{"title":"Distance-based Disagreement Classifiers Combination","authors":"C. Freitas, J. Carvalho, José Josemar de Oliveira, S. B. K. Aires, R. Sabourin","doi":"10.1109/IJCNN.2007.4371390","DOIUrl":null,"url":null,"abstract":"We present a methodology to analyze multiple classifiers systems (MCS) performance, using the diversity concept. The goal is to define an alternative approach to the conventional recognition rate criterion, which usually requires an exhaustive combination search. This approach defines a distance-based disagreement (DbD) measure using an Euclidean distance computed between confusion matrices and a soft-correlation rule to indicate the most likely candidates to the best classifiers ensemble. As case study, we apply this strategy to two different handwritten recognition systems. Experimental results indicate that the method proposed can be used as a low-cost alternative to conventional approaches.","PeriodicalId":350091,"journal":{"name":"2007 International Joint Conference on Neural Networks","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Joint Conference on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2007.4371390","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We present a methodology to analyze multiple classifiers systems (MCS) performance, using the diversity concept. The goal is to define an alternative approach to the conventional recognition rate criterion, which usually requires an exhaustive combination search. This approach defines a distance-based disagreement (DbD) measure using an Euclidean distance computed between confusion matrices and a soft-correlation rule to indicate the most likely candidates to the best classifiers ensemble. As case study, we apply this strategy to two different handwritten recognition systems. Experimental results indicate that the method proposed can be used as a low-cost alternative to conventional approaches.
基于距离的分歧分类器组合
本文提出了一种利用多样性概念分析多分类器系统性能的方法。目标是定义一种替代传统识别率标准的方法,传统识别率标准通常需要穷举组合搜索。该方法使用混淆矩阵之间计算的欧几里得距离和软相关规则来定义基于距离的不一致(DbD)度量,以指示最佳分类器集成的最可能候选对象。作为案例研究,我们将该策略应用于两种不同的手写识别系统。实验结果表明,该方法可以作为传统方法的一种低成本替代方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信