An Online Detection Method of Short Circuit for Battery Packs

Hongzhong Ma, Qifan Yang
{"title":"An Online Detection Method of Short Circuit for Battery Packs","authors":"Hongzhong Ma, Qifan Yang","doi":"10.1109/AEEES54426.2022.9759669","DOIUrl":null,"url":null,"abstract":"Short circuit (SC) is a stumbling block to battery safety. The common battery management system (BMS) holding the fixed threshold focuses overly on the absolute magnitude of battery voltage, and therefore cannot detect the early SC. This paper proposes an online method for detecting SC based on principal component analysis (PCA), which possesses an adaptive threshold. First, we analyze the fault signatures of SC. Then, utilizing PCA, we generalize the adaptive threshold and design a detection flow. Finally, the effect of this method is experimentally verified. The results indicate that a early SC with the discharge current of 0.17C can be identified within 2s.","PeriodicalId":252797,"journal":{"name":"2022 4th Asia Energy and Electrical Engineering Symposium (AEEES)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 4th Asia Energy and Electrical Engineering Symposium (AEEES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AEEES54426.2022.9759669","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Short circuit (SC) is a stumbling block to battery safety. The common battery management system (BMS) holding the fixed threshold focuses overly on the absolute magnitude of battery voltage, and therefore cannot detect the early SC. This paper proposes an online method for detecting SC based on principal component analysis (PCA), which possesses an adaptive threshold. First, we analyze the fault signatures of SC. Then, utilizing PCA, we generalize the adaptive threshold and design a detection flow. Finally, the effect of this method is experimentally verified. The results indicate that a early SC with the discharge current of 0.17C can be identified within 2s.
电池组短路在线检测方法研究
短路(SC)是电池安全的绊脚石。采用固定阈值的普通电池管理系统(BMS)过于关注电池电压的绝对值,因此无法检测出早期SC。本文提出了一种基于主成分分析(PCA)的在线SC检测方法,该方法具有自适应阈值。首先对故障特征进行分析,然后利用主成分分析法对自适应阈值进行概化,并设计检测流程。最后,通过实验验证了该方法的有效性。结果表明,放电电流为0.17C的早期SC可以在2s内识别出来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信