Stream Reasoning Using Temporal Logic and Predictive Probabilistic State Models

Mattias Tiger, F. Heintz
{"title":"Stream Reasoning Using Temporal Logic and Predictive Probabilistic State Models","authors":"Mattias Tiger, F. Heintz","doi":"10.1109/TIME.2016.28","DOIUrl":null,"url":null,"abstract":"Integrating logical and probabilistic reasoning and integrating reasoning over observations and predictions are two important challenges in AI. In this paper we propose P-MTL as an extension to Metric Temporal Logic supporting temporal logical reasoning over probabilistic and predicted states. The contributions are (1) reasoning over uncertain states at single time points, (2) reasoning over uncertain states between time points, (3) reasoning over uncertain predictions of future and past states and (4) a computational environment formalism that ground the uncertainty in observations of the physical world. Concrete robot soccer examples are given.","PeriodicalId":347020,"journal":{"name":"2016 23rd International Symposium on Temporal Representation and Reasoning (TIME)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 23rd International Symposium on Temporal Representation and Reasoning (TIME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TIME.2016.28","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

Integrating logical and probabilistic reasoning and integrating reasoning over observations and predictions are two important challenges in AI. In this paper we propose P-MTL as an extension to Metric Temporal Logic supporting temporal logical reasoning over probabilistic and predicted states. The contributions are (1) reasoning over uncertain states at single time points, (2) reasoning over uncertain states between time points, (3) reasoning over uncertain predictions of future and past states and (4) a computational environment formalism that ground the uncertainty in observations of the physical world. Concrete robot soccer examples are given.
使用时间逻辑和预测概率状态模型的流推理
整合逻辑和概率推理以及整合观察和预测推理是人工智能的两个重要挑战。在本文中,我们提出P-MTL作为度量时间逻辑的扩展,支持对概率和预测状态的时间逻辑推理。贡献是(1)对单个时间点不确定状态的推理,(2)对时间点之间不确定状态的推理,(3)对未来和过去状态的不确定预测的推理,以及(4)基于物理世界观察的不确定性的计算环境形式主义。给出了具体的机器人足球实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信