Quantization of the Poisson Type Central Limit Theorem (1)

Y. Lu
{"title":"Quantization of the Poisson Type Central Limit Theorem (1)","authors":"Y. Lu","doi":"10.31390/josa.3.2.04","DOIUrl":null,"url":null,"abstract":". A sequence of binomial random variables, both classical and algebraic, is modelized in terms of the creation–annihilation operators in a natural way and each of these random variables is a sum of four terms. By taking a proper interacting Fock structure, these random variables verify a certain pre–given (classical, Boolean, free, monotone, anti–monotone, etc) independence and the sum of finite independent binomial random variables formulates the corresponding Bernoulli sequence. With the help of such a structure, the Poisson type central limit theorem is quantized by considering individually the contribution of those four terms to the limit. Moreover, its off–diagonal part gives a quantization of the Laplace–de Moivre type central limit theorem.","PeriodicalId":263604,"journal":{"name":"Journal of Stochastic Analysis","volume":"116 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Stochastic Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31390/josa.3.2.04","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

. A sequence of binomial random variables, both classical and algebraic, is modelized in terms of the creation–annihilation operators in a natural way and each of these random variables is a sum of four terms. By taking a proper interacting Fock structure, these random variables verify a certain pre–given (classical, Boolean, free, monotone, anti–monotone, etc) independence and the sum of finite independent binomial random variables formulates the corresponding Bernoulli sequence. With the help of such a structure, the Poisson type central limit theorem is quantized by considering individually the contribution of those four terms to the limit. Moreover, its off–diagonal part gives a quantization of the Laplace–de Moivre type central limit theorem.
泊松中心极限定理的量子化(1)
。一个经典的和代数的二项随机变量序列,以自然的方式用创造-湮灭算子建模,每个随机变量都是四项的和。通过选取适当的相互作用的Fock结构,这些随机变量验证了某种预先给定的(经典的、布尔的、自由的、单调的、反单调的等)独立性,并将有限个独立的二项式随机变量的和构成相应的伯努利序列。在这种结构的帮助下,通过单独考虑这四项对极限的贡献,将泊松型中心极限定理量子化。此外,它的非对角线部分给出了拉普拉斯-德-莫弗尔型中心极限定理的量子化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信