A spectral algorithm for topographical Co-clustering

Nicoleta Rogovschi, Lazhar Labiod, M. Nadif
{"title":"A spectral algorithm for topographical Co-clustering","authors":"Nicoleta Rogovschi, Lazhar Labiod, M. Nadif","doi":"10.1109/IJCNN.2012.6252398","DOIUrl":null,"url":null,"abstract":"This paper proposes a spectral algorithm for cross-topographic clustering. It leads to a simultaneous clustering on the rows and columns of data matrix, as well as the projection of the clusters on a two-dimensional grid while preserving the topological order of the initial data. The proposed algorithm is based on a spectral decomposition of this data matrix and the definition of a new matrix taking into account the co-clustering problem. The proposed approach has been validated on multiple datasets and the experimental results have shown very promising performance.","PeriodicalId":287844,"journal":{"name":"The 2012 International Joint Conference on Neural Networks (IJCNN)","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2012 International Joint Conference on Neural Networks (IJCNN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2012.6252398","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper proposes a spectral algorithm for cross-topographic clustering. It leads to a simultaneous clustering on the rows and columns of data matrix, as well as the projection of the clusters on a two-dimensional grid while preserving the topological order of the initial data. The proposed algorithm is based on a spectral decomposition of this data matrix and the definition of a new matrix taking into account the co-clustering problem. The proposed approach has been validated on multiple datasets and the experimental results have shown very promising performance.
地形共聚类的光谱算法
本文提出了一种跨地形聚类的光谱算法。它可以同时对数据矩阵的行和列进行聚类,并在保持初始数据的拓扑顺序的同时将聚类投影到二维网格上。该算法基于该数据矩阵的谱分解和新矩阵的定义,并考虑了共聚类问题。该方法已在多个数据集上进行了验证,实验结果显示了良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信