Hausdorff Dimension of a Chaotic Set of Shift of a Symbolic Space.

Xiong Jincheng
{"title":"Hausdorff Dimension of a Chaotic Set of Shift of a Symbolic Space.","authors":"Xiong Jincheng","doi":"10.1360/YA1995-38-6-696","DOIUrl":null,"url":null,"abstract":"For the shift a of the symbolic space ∑ N there exists a subset (called a chaotic set for σ) C of ∑N whose Hausdorff dimension is 1 everywhere (i.e. the Hausdorff dimension of the intersection of C and every non-empty open set of the symbolic space ∑ N is 1), satisfying the condition for any non-empty subset A of the set C, and for any continuous map F: A→∑N there exists a strictly increasing sequence {r n } of positive integers such that the sequence {σ (x)} converges to F(x) for any x∈A. On the other hand, it is shown that in ∑ N every chaotic set for σ has 1-dimensional Hausdorff measure 0.","PeriodicalId":256661,"journal":{"name":"Science in China Series A-Mathematics, Physics, Astronomy & Technological Science","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science in China Series A-Mathematics, Physics, Astronomy & Technological Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1360/YA1995-38-6-696","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

For the shift a of the symbolic space ∑ N there exists a subset (called a chaotic set for σ) C of ∑N whose Hausdorff dimension is 1 everywhere (i.e. the Hausdorff dimension of the intersection of C and every non-empty open set of the symbolic space ∑ N is 1), satisfying the condition for any non-empty subset A of the set C, and for any continuous map F: A→∑N there exists a strictly increasing sequence {r n } of positive integers such that the sequence {σ (x)} converges to F(x) for any x∈A. On the other hand, it is shown that in ∑ N every chaotic set for σ has 1-dimensional Hausdorff measure 0.
符号空间移位混沌集的Hausdorff维数。
的转变一个象征性空间∑N存在一个子集(称为混沌为σ)C∑N的豪斯多夫维数是1无处不在的豪斯多夫维数(即C和每一个非空开集的交集的象征性空间∑N = 1),满足任何非空集合的一个子集的条件C,和任何连续映射F:→∑N存在一个严格递增序列{r N}的正整数序列{σ(x)}收敛于任何x∈F (x)。另一方面,证明了在∑N中,σ的每一个混沌集都具有一维的豪斯多夫测度0。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信