Log-Likelihood Kernels Based on Adapted GMMs for Speaker Verification

Liang He, Yi Yang, Jia Liu
{"title":"Log-Likelihood Kernels Based on Adapted GMMs for Speaker Verification","authors":"Liang He, Yi Yang, Jia Liu","doi":"10.1109/GCIS.2012.100","DOIUrl":null,"url":null,"abstract":"Kernels in a SVM-based text-independent speaker verification system determine the performance. One of the main difficulties in designing a kernel arises from the unequal length of cepstral vector sequences. To simplify the above problem, time information is discarded and each speaker is presumed to have a unique probability density distribution. Gaussian mixture models (GMMs) are often used to estimate the probability density distribution from the train cepstral vector sequence. The methods of constructing SVM kernels by adapted GMMs become an open and key question in a GMM-SVM system. In this paper, we introduce a novel way of measuring the similarity between adapted GMMs and propose a log-likelihood kernel. We demonstrate that the presented kernel has an excellent performance on the National Institute of Standards and Technology (NIST) speaker recognition evaluation (SRE) 2008 tel-tel English corpus.","PeriodicalId":337629,"journal":{"name":"2012 Third Global Congress on Intelligent Systems","volume":"639 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Third Global Congress on Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GCIS.2012.100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Kernels in a SVM-based text-independent speaker verification system determine the performance. One of the main difficulties in designing a kernel arises from the unequal length of cepstral vector sequences. To simplify the above problem, time information is discarded and each speaker is presumed to have a unique probability density distribution. Gaussian mixture models (GMMs) are often used to estimate the probability density distribution from the train cepstral vector sequence. The methods of constructing SVM kernels by adapted GMMs become an open and key question in a GMM-SVM system. In this paper, we introduce a novel way of measuring the similarity between adapted GMMs and propose a log-likelihood kernel. We demonstrate that the presented kernel has an excellent performance on the National Institute of Standards and Technology (NIST) speaker recognition evaluation (SRE) 2008 tel-tel English corpus.
基于自适应gmm的对数似然核方法用于说话人验证
基于支持向量机的文本无关说话人验证系统中的核决定了系统的性能。设计核的主要困难之一是倒谱向量序列的长度不等。为了简化上述问题,丢弃时间信息,假设每个说话人具有唯一的概率密度分布。高斯混合模型(GMMs)常用于估计列车倒谱向量序列的概率密度分布。利用自适应遗传算法构造支持向量机核的方法成为遗传算法-支持向量机系统中的一个开放和关键问题。在本文中,我们引入了一种新的方法来测量自适应gmm之间的相似度,并提出了一个对数似然核。我们证明了所提出的内核在美国国家标准与技术研究院(NIST)说话人识别评估(SRE) 2008年电话-电话英语语料库上具有优异的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信