Crop Recommendation System using ML

D. Kavitha
{"title":"Crop Recommendation System using ML","authors":"D. Kavitha","doi":"10.55041/isjem00457","DOIUrl":null,"url":null,"abstract":"The crop recommendation system using machine learning is an intelligent decision support system that provides recommendations to farmers on the most suitable crop to cultivate based on soil and weather conditions like temperature, humidity, rainfall, nitrogen, potassium, phosphorus and pH value of the soil. This system uses machine learning algorithms like Decision Tree, Random Forest, Naïve Bayes, Support Vector Machine (SVM), and Logistic Regression to analyse data on soil properties, climate, and other relevant factors to generate personalized crop recommendations for each farmer. Keywords: Crop Recommendation, temperature, humidity, rainfall, nitrogen, potassium, phosphorus, ph value, Decision Tree, Random Forest, Naïve Bayes, Support Vector Machine (SVM), Logistic Regression, machine Learning.","PeriodicalId":285811,"journal":{"name":"International Scientific Journal of Engineering and Management","volume":"105 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Scientific Journal of Engineering and Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55041/isjem00457","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The crop recommendation system using machine learning is an intelligent decision support system that provides recommendations to farmers on the most suitable crop to cultivate based on soil and weather conditions like temperature, humidity, rainfall, nitrogen, potassium, phosphorus and pH value of the soil. This system uses machine learning algorithms like Decision Tree, Random Forest, Naïve Bayes, Support Vector Machine (SVM), and Logistic Regression to analyse data on soil properties, climate, and other relevant factors to generate personalized crop recommendations for each farmer. Keywords: Crop Recommendation, temperature, humidity, rainfall, nitrogen, potassium, phosphorus, ph value, Decision Tree, Random Forest, Naïve Bayes, Support Vector Machine (SVM), Logistic Regression, machine Learning.
使用ML的作物推荐系统
使用机器学习的作物推荐系统是一个智能决策支持系统,它根据土壤和天气条件(如温度、湿度、降雨量、土壤的氮、钾、磷和pH值)向农民推荐最适合种植的作物。该系统使用决策树、随机森林、Naïve贝叶斯、支持向量机(SVM)和逻辑回归等机器学习算法来分析土壤属性、气候和其他相关因素的数据,为每个农民生成个性化的作物建议。关键词:作物推荐,温度,湿度,降雨量,氮,钾,磷,ph值,决策树,随机森林,Naïve贝叶斯,支持向量机(SVM),逻辑回归,机器学习
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信