Adic spaces II

P. Scholze, Jared Weinstein
{"title":"Adic spaces II","authors":"P. Scholze, Jared Weinstein","doi":"10.2307/j.ctvs32rc9.6","DOIUrl":null,"url":null,"abstract":"This chapter defines adic spaces. A scheme is a ringed space which locally looks like the spectrum of a ring. An adic space will be something similar. The chapter then identifies the adic version of “locally ringed space.” Briefly, it is a topologically ringed topological space equipped with valuations. The chapter also reflects on the role of A+ in the definition of adic spaces. The subring A+ in a Huber pair may seem unnecessary at first: why not just consider all continuous valuations on A? Specifying A+ keeps track of which inequalities have been enforced among the continuous valuations. Finally, the chapter differentiates between sheafy and non-sheafy Huber pairs.","PeriodicalId":270009,"journal":{"name":"Berkeley Lectures on p-adic Geometry","volume":"114 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Berkeley Lectures on p-adic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2307/j.ctvs32rc9.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This chapter defines adic spaces. A scheme is a ringed space which locally looks like the spectrum of a ring. An adic space will be something similar. The chapter then identifies the adic version of “locally ringed space.” Briefly, it is a topologically ringed topological space equipped with valuations. The chapter also reflects on the role of A+ in the definition of adic spaces. The subring A+ in a Huber pair may seem unnecessary at first: why not just consider all continuous valuations on A? Specifying A+ keeps track of which inequalities have been enforced among the continuous valuations. Finally, the chapter differentiates between sheafy and non-sheafy Huber pairs.
本章定义了adic空格。方案是一个环空间,它局部看起来像一个环的谱。进进空间也类似。然后,本章确定了“局部环状空间”的进进版本。简而言之,它是一个具有赋值的拓扑环形拓扑空间。本章还反映了A+在进进空间定义中的作用。Huber对中的子A+乍一看似乎没有必要:为什么不考虑A的所有连续估值呢?指定A+可以跟踪在连续赋值中执行了哪些不平等。最后,本章区分了重Huber对和非重Huber对。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信