Adaptive Message Update for Fast Affinity Propagation

Y. Fujiwara, M. Nakatsuji, Hiroaki Shiokawa, Yasutoshi Ida, Machiko Toyoda
{"title":"Adaptive Message Update for Fast Affinity Propagation","authors":"Y. Fujiwara, M. Nakatsuji, Hiroaki Shiokawa, Yasutoshi Ida, Machiko Toyoda","doi":"10.1145/2783258.2783280","DOIUrl":null,"url":null,"abstract":"Affinity Propagation is a clustering algorithm used in many applications. It iteratively updates messages between data points until convergence. The message updating process enables Affinity Propagation to have higher clustering quality compared with other approaches. However, its computation cost is high; it is quadratic in the number of data points. This is because it updates the messages of all data point pairs. This paper proposes an efficient algorithm that guarantees the same clustering results as the original algorithm. Our approach, F-AP, is based on two ideas: (1) it computes upper and lower estimates to limit the messages to be updated in each iteration, and (2) it dynamically detects converged messages to efficiently skip unneeded updates. Experiments show that F-AP is much faster than previous approaches with no loss in clustering performance.","PeriodicalId":243428,"journal":{"name":"Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2783258.2783280","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

Affinity Propagation is a clustering algorithm used in many applications. It iteratively updates messages between data points until convergence. The message updating process enables Affinity Propagation to have higher clustering quality compared with other approaches. However, its computation cost is high; it is quadratic in the number of data points. This is because it updates the messages of all data point pairs. This paper proposes an efficient algorithm that guarantees the same clustering results as the original algorithm. Our approach, F-AP, is based on two ideas: (1) it computes upper and lower estimates to limit the messages to be updated in each iteration, and (2) it dynamically detects converged messages to efficiently skip unneeded updates. Experiments show that F-AP is much faster than previous approaches with no loss in clustering performance.
用于快速关联传播的自适应消息更新
亲和性传播是许多应用程序中使用的一种聚类算法。它迭代地更新数据点之间的消息,直到收敛。与其他方法相比,消息更新过程使Affinity Propagation具有更高的集群质量。但其计算成本较高;它在数据点的数量上是二次的。这是因为它更新所有数据点对的消息。本文提出了一种高效的聚类算法,保证了与原算法相同的聚类结果。我们的方法F-AP基于两个想法:(1)计算上限和下限估计,以限制每次迭代中要更新的消息;(2)动态检测聚合消息,以有效跳过不必要的更新。实验表明,F-AP的聚类速度比以前的方法快得多,而且聚类性能没有损失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信