A GPU accelerated PSO with application to Economic Dispatch problem

S. Papadakis, A.G. Bakrtzis
{"title":"A GPU accelerated PSO with application to Economic Dispatch problem","authors":"S. Papadakis, A.G. Bakrtzis","doi":"10.1109/ISAP.2011.6082162","DOIUrl":null,"url":null,"abstract":"This paper investigates the use of Graphics Processing Units (GPUs) as general purpose parallel architectures, for the acceleration of the solution of the Economic Dispatch problem (ED) via stochastic search algorithms. The Comprehensive Learning Particle Swarm Optimizer (CLPSO) is used as host process to carry out the optimization task. At every time of the evolution a parallel graphics card speeds up the optimization process by calculating, in parallel, the fitness value of all particles. Two different approaches are investigated: a fine-grained parallelism and a coarse-grained one. The results demonstrate that GPUs can be applied with success to speed up computationally intensive problems in electric energy systems.","PeriodicalId":424662,"journal":{"name":"2011 16th International Conference on Intelligent System Applications to Power Systems","volume":"197 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 16th International Conference on Intelligent System Applications to Power Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISAP.2011.6082162","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

This paper investigates the use of Graphics Processing Units (GPUs) as general purpose parallel architectures, for the acceleration of the solution of the Economic Dispatch problem (ED) via stochastic search algorithms. The Comprehensive Learning Particle Swarm Optimizer (CLPSO) is used as host process to carry out the optimization task. At every time of the evolution a parallel graphics card speeds up the optimization process by calculating, in parallel, the fitness value of all particles. Two different approaches are investigated: a fine-grained parallelism and a coarse-grained one. The results demonstrate that GPUs can be applied with success to speed up computationally intensive problems in electric energy systems.
GPU加速粒子群算法在经济调度中的应用
本文研究了图形处理单元(gpu)作为通用并行架构的使用,用于通过随机搜索算法加速经济调度问题(ED)的解决。采用综合学习粒子群优化器(Comprehensive Learning Particle Swarm Optimizer, CLPSO)作为主进程执行优化任务。在进化的每一次,并行显卡通过并行计算所有粒子的适应度值来加快优化过程。研究了两种不同的方法:细粒度并行和粗粒度并行。结果表明,gpu可以成功地应用于电力系统中计算密集型问题的加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信