Image-Based Pavement Type Classification with Convolutional Neural Networks

A. Riid, Davide L. Manna, S. Astapov
{"title":"Image-Based Pavement Type Classification with Convolutional Neural Networks","authors":"A. Riid, Davide L. Manna, S. Astapov","doi":"10.1109/INES49302.2020.9147199","DOIUrl":null,"url":null,"abstract":"Road pavement type classification is important in route planning, road maintenance and for autonomous vehicles. In this paper, we propose a deep learning based method for automatic road type classification from road surface images. The resulting binary classifiers (paved and non-paved road classes) achieve up to 98% classification accuracy on the test set that contains over 100 000 real-world road images that cover a distance of over 300 km.","PeriodicalId":175830,"journal":{"name":"2020 IEEE 24th International Conference on Intelligent Engineering Systems (INES)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 24th International Conference on Intelligent Engineering Systems (INES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INES49302.2020.9147199","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Road pavement type classification is important in route planning, road maintenance and for autonomous vehicles. In this paper, we propose a deep learning based method for automatic road type classification from road surface images. The resulting binary classifiers (paved and non-paved road classes) achieve up to 98% classification accuracy on the test set that contains over 100 000 real-world road images that cover a distance of over 300 km.
基于图像的卷积神经网络路面类型分类
道路路面类型分类在路线规划、道路维护和自动驾驶汽车中具有重要意义。本文提出了一种基于深度学习的路面图像道路类型自动分类方法。所得到的二元分类器(铺砌和非铺砌道路类别)在包含超过100,000张真实道路图像的测试集上实现了高达98%的分类准确率,这些图像覆盖的距离超过300公里。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信