Yu Wang, Yang Feng, Haofu Liao, Jiebo Luo, Xiangyang Xu
{"title":"Do They All Look the Same? Deciphering Chinese, Japanese and Koreans by Fine-Grained Deep Learning","authors":"Yu Wang, Yang Feng, Haofu Liao, Jiebo Luo, Xiangyang Xu","doi":"10.1109/MIPR.2018.00015","DOIUrl":null,"url":null,"abstract":"We study to what extend Chinese, Japanese and Korean faces can be classified and which facial attributes offer the most important cues. First, we propose a novel way of ob- taining large numbers of facial images with nationality la- bels. Then we train state-of-the-art neural networks with these labeled images. We are able to achieve an accuracy of 75.03% in the classification task, with chances being 33.33% and human accuracy 49% . Further, we train mul- tiple facial attribute classifiers to identify the most distinc- tive features for each group. We find that Chinese, Japanese and Koreans do exhibit substantial differences in certain at- tributes, such as bangs, smiling, and bushy eyebrows. Along the way, we uncover several gender-related cross-country patterns as well. Our work, which complements existing APIs such as Microsoft Cognitive Services and Face++, could find potential applications in tourism, e-commerce, social media marketing, criminal justice and even counter- terrorism.","PeriodicalId":320000,"journal":{"name":"2018 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MIPR.2018.00015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22
Abstract
We study to what extend Chinese, Japanese and Korean faces can be classified and which facial attributes offer the most important cues. First, we propose a novel way of ob- taining large numbers of facial images with nationality la- bels. Then we train state-of-the-art neural networks with these labeled images. We are able to achieve an accuracy of 75.03% in the classification task, with chances being 33.33% and human accuracy 49% . Further, we train mul- tiple facial attribute classifiers to identify the most distinc- tive features for each group. We find that Chinese, Japanese and Koreans do exhibit substantial differences in certain at- tributes, such as bangs, smiling, and bushy eyebrows. Along the way, we uncover several gender-related cross-country patterns as well. Our work, which complements existing APIs such as Microsoft Cognitive Services and Face++, could find potential applications in tourism, e-commerce, social media marketing, criminal justice and even counter- terrorism.