The influence of laser re-melting on microstructure and hardness of gas-nitrided steel

D. Panfil, P. Wach, M. Kulka, J. Michalski
{"title":"The influence of laser re-melting on microstructure and hardness of gas-nitrided steel","authors":"D. Panfil, P. Wach, M. Kulka, J. Michalski","doi":"10.1515/amtm-2016-0004","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, modification of nitrided layer by laser re-melting was presented. The nitriding process has many advantageous properties. Controlled gas nitriding was carried out on 42CrMo4 steel. As a consequence of this process, ε+γ’ compound zone and diffusion zone were produced at the surface. Next, the nitrided layer was laser remelted using TRUMPF TLF 2600 Turbo CO2 laser. Laser tracks were arranged as single tracks with the use of various laser beam powers (P), ranging from 0.39 to 1.04 kW. The effects of laser beam power on the microstructure, dimensions of laser tracks and hardness profiles were analyzed. Laser treatment caused the decomposition of continuous compound zone at the surface and an increase in hardness of previously nitrided layer because of the appearance of martensite in re-melted and heat-affected zones","PeriodicalId":379471,"journal":{"name":"Archives of Mechanical Technology and Materials","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Mechanical Technology and Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/amtm-2016-0004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Abstract In this paper, modification of nitrided layer by laser re-melting was presented. The nitriding process has many advantageous properties. Controlled gas nitriding was carried out on 42CrMo4 steel. As a consequence of this process, ε+γ’ compound zone and diffusion zone were produced at the surface. Next, the nitrided layer was laser remelted using TRUMPF TLF 2600 Turbo CO2 laser. Laser tracks were arranged as single tracks with the use of various laser beam powers (P), ranging from 0.39 to 1.04 kW. The effects of laser beam power on the microstructure, dimensions of laser tracks and hardness profiles were analyzed. Laser treatment caused the decomposition of continuous compound zone at the surface and an increase in hardness of previously nitrided layer because of the appearance of martensite in re-melted and heat-affected zones
激光重熔对气体氮化钢显微组织和硬度的影响
本文介绍了激光重熔改性氮化层的方法。渗氮工艺具有许多优点。对42CrMo4钢进行了可控气体氮化处理。这一过程在表面形成了ε+γ复合区和扩散区。采用TRUMPF TLF 2600 Turbo CO2激光器对渗氮层进行激光重熔。激光轨迹被布置成单轨迹,使用不同的激光束功率(P),范围从0.39到1.04 kW。分析了激光束功率对激光轨迹组织、尺寸和硬度分布的影响。激光处理导致表面连续复合区分解,由于再熔区和热影响区出现马氏体,导致先前氮化层的硬度增加
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信