Classification of Images of Visual Objects Based on Statistical Relevance Measures of Their Structural Descriptions

V. Gorokhovatskyi, Gadetska Svitlana
{"title":"Classification of Images of Visual Objects Based on Statistical Relevance Measures of Their Structural Descriptions","authors":"V. Gorokhovatskyi, Gadetska Svitlana","doi":"10.1109/STC-CSIT.2018.8526727","DOIUrl":null,"url":null,"abstract":"A problem of classification of visual object images in the space of attributes of descriptors of special points is solved with representation of the description in cluster form and using of statistical measures to calculate relevance of descriptions. The analysis of specific application feature of statistical and metric classifiers in determining the level of relevance of structural descriptions is performed. Comparison of the characteristics of relevance measures on the calculated examples is performed. The Kullback-Leibler divergence is proposed to use as a universal and effective measure for the classification problem. The effectiveness of the proposed approach for application image dataset is shown.","PeriodicalId":403793,"journal":{"name":"2018 IEEE 13th International Scientific and Technical Conference on Computer Sciences and Information Technologies (CSIT)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 13th International Scientific and Technical Conference on Computer Sciences and Information Technologies (CSIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/STC-CSIT.2018.8526727","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A problem of classification of visual object images in the space of attributes of descriptors of special points is solved with representation of the description in cluster form and using of statistical measures to calculate relevance of descriptions. The analysis of specific application feature of statistical and metric classifiers in determining the level of relevance of structural descriptions is performed. Comparison of the characteristics of relevance measures on the calculated examples is performed. The Kullback-Leibler divergence is proposed to use as a universal and effective measure for the classification problem. The effectiveness of the proposed approach for application image dataset is shown.
基于结构描述统计相关度量的视觉对象图像分类
通过对特殊点描述符的属性空间进行聚类表示,并利用统计度量来计算描述的相关性,解决了视觉目标图像在特殊点描述符属性空间中的分类问题。分析了统计分类器和度量分类器在确定结构描述的相关性水平方面的具体应用特征。通过算例对相关测度的特性进行了比较。提出了Kullback-Leibler散度作为分类问题的通用有效测度。结果表明,该方法在应用图像数据集上是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信