Determining transportation mode on mobile phones

S. Reddy, J. Burke, D. Estrin, Mark H. Hansen, M. Srivastava
{"title":"Determining transportation mode on mobile phones","authors":"S. Reddy, J. Burke, D. Estrin, Mark H. Hansen, M. Srivastava","doi":"10.1109/ISWC.2008.4911579","DOIUrl":null,"url":null,"abstract":"As mobile phones advance in functionality and capability, they are increasingly being used as instruments for personal monitoring. Applications are being developed that take advantage of the sensing capabilities of mobile phones - many have accelerometers, location capabilities, imagers, and microphones - to infer contextual information. We focus on one type of context, the transportation mode of an individual, with the goal of creating a convenient (no requirement to place sensors externally or have specific position/orientation settings) classification system that uses a mobile phone with a GPS receiver and an accelerometer sensor to determine if an individual is stationary, walking, running, biking, or in motorized transport. The target application for this transportation mode inference involves assessing the hazard exposure and environmental impact of an individual's travel patterns. Our prototype classification system consisting of a decision tree followed by a first-order hidden Markov model achieves the application requirement of having accuracy level greater than 90% when testing with our dataset consisting of twenty hours of data collected across six individuals.","PeriodicalId":336550,"journal":{"name":"2008 12th IEEE International Symposium on Wearable Computers","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"132","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 12th IEEE International Symposium on Wearable Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISWC.2008.4911579","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 132

Abstract

As mobile phones advance in functionality and capability, they are increasingly being used as instruments for personal monitoring. Applications are being developed that take advantage of the sensing capabilities of mobile phones - many have accelerometers, location capabilities, imagers, and microphones - to infer contextual information. We focus on one type of context, the transportation mode of an individual, with the goal of creating a convenient (no requirement to place sensors externally or have specific position/orientation settings) classification system that uses a mobile phone with a GPS receiver and an accelerometer sensor to determine if an individual is stationary, walking, running, biking, or in motorized transport. The target application for this transportation mode inference involves assessing the hazard exposure and environmental impact of an individual's travel patterns. Our prototype classification system consisting of a decision tree followed by a first-order hidden Markov model achieves the application requirement of having accuracy level greater than 90% when testing with our dataset consisting of twenty hours of data collected across six individuals.
通过手机确定交通方式
随着手机在功能和性能上的进步,它们越来越多地被用作个人监控的工具。正在开发的应用程序利用移动电话的传感功能——许多有加速度计、定位功能、成像仪和麦克风——来推断上下文信息。我们专注于一种类型的环境,即个人的交通方式,目标是创建一个方便的分类系统(不需要在外部放置传感器或具有特定的位置/方向设置),该系统使用带有GPS接收器和加速度计传感器的手机来确定个人是静止的、步行的、跑步的、骑自行车的还是在机动交通工具中。这种交通方式推断的目标应用包括评估个人出行模式的危害暴露和环境影响。我们的原型分类系统由一个决策树和一个一阶隐马尔可夫模型组成,在使用我们的数据集(包括从6个人收集的20小时数据)进行测试时,达到了准确率高于90%的应用要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信