From proximity sensing to spatio-temporal social graphs

Claudio Martella, M. Dobson, A. V. Halteren, M. Steen
{"title":"From proximity sensing to spatio-temporal social graphs","authors":"Claudio Martella, M. Dobson, A. V. Halteren, M. Steen","doi":"10.1109/PerCom.2014.6813947","DOIUrl":null,"url":null,"abstract":"Understanding the social dynamics of a group of people can give new insights into social behavior. Physical proximity between individuals results from the interactions between them. Hence, measuring physical proximity is an important step towards a better understanding of social behavior. We discuss a novel approach to sense proximity from within the social dynamics. Our primary objective is to construct a spatio-temporal social graph from noisy proximity data. We address the technical and algorithmic challenges of measuring proximity reliably and accurately. Simulations and real world experiments demonstrate the feasibility and scalability of our approach. Our algorithms doubles the sensitivity of proximity detections at the cost of a slight reduction in specificity.","PeriodicalId":263520,"journal":{"name":"2014 IEEE International Conference on Pervasive Computing and Communications (PerCom)","volume":"252 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Pervasive Computing and Communications (PerCom)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PerCom.2014.6813947","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

Understanding the social dynamics of a group of people can give new insights into social behavior. Physical proximity between individuals results from the interactions between them. Hence, measuring physical proximity is an important step towards a better understanding of social behavior. We discuss a novel approach to sense proximity from within the social dynamics. Our primary objective is to construct a spatio-temporal social graph from noisy proximity data. We address the technical and algorithmic challenges of measuring proximity reliably and accurately. Simulations and real world experiments demonstrate the feasibility and scalability of our approach. Our algorithms doubles the sensitivity of proximity detections at the cost of a slight reduction in specificity.
从接近感测到时空社会图谱
了解一群人的社会动态可以为社会行为提供新的见解。个体之间的身体接近源于他们之间的相互作用。因此,测量物理接近度是更好地理解社会行为的重要一步。我们讨论了一种从社会动态内部感知接近的新方法。我们的主要目标是从噪声邻近数据构建一个时空社交图。我们解决了可靠和准确测量接近度的技术和算法挑战。仿真和现实世界的实验证明了我们的方法的可行性和可扩展性。我们的算法以略微降低特异性为代价,将接近检测的灵敏度提高了一倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信