Generative Policy Framework for AI Training Data Curation

V. Salapura, D. Wood, S. Witherspoon, Keith Grueneberg, E. Bertino, A. A. Jabal, S. Calo
{"title":"Generative Policy Framework for AI Training Data Curation","authors":"V. Salapura, D. Wood, S. Witherspoon, Keith Grueneberg, E. Bertino, A. A. Jabal, S. Calo","doi":"10.1109/SMARTCOMP.2019.00092","DOIUrl":null,"url":null,"abstract":"Policy-based mechanisms are used to implement desired autonomic behavior of a managed system in a distributed environment. For modern dynamically changing systems, policy-based mechanisms tend to be too rigid, and quickly lose their efficacy when conditions of the autonomous system change during its operation. In this paper, we propose a generative policy framework that can generate policies for an autonomous system when conditions change. For changed conditions, the policy generation manager dynamically generates new set of policies optimized for the new situation. As a use case, we demonstrate how our generative policy framework generates policies for selecting optimal data for an AI model training. The policies are dynamically generated based on the availability and trustworthiness of data in a coalition environment.","PeriodicalId":253364,"journal":{"name":"2019 IEEE International Conference on Smart Computing (SMARTCOMP)","volume":"32 11","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Smart Computing (SMARTCOMP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMARTCOMP.2019.00092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Policy-based mechanisms are used to implement desired autonomic behavior of a managed system in a distributed environment. For modern dynamically changing systems, policy-based mechanisms tend to be too rigid, and quickly lose their efficacy when conditions of the autonomous system change during its operation. In this paper, we propose a generative policy framework that can generate policies for an autonomous system when conditions change. For changed conditions, the policy generation manager dynamically generates new set of policies optimized for the new situation. As a use case, we demonstrate how our generative policy framework generates policies for selecting optimal data for an AI model training. The policies are dynamically generated based on the availability and trustworthiness of data in a coalition environment.
人工智能训练数据管理的生成策略框架
基于策略的机制用于在分布式环境中实现托管系统所需的自治行为。对于现代动态变化的系统来说,基于政策的机制往往过于僵化,在自治系统运行过程中,当自治系统的条件发生变化时,政策机制就会迅速失效。在本文中,我们提出了一个生成策略框架,该框架可以在条件变化时为自治系统生成策略。对于已更改的条件,策略生成管理器会动态生成针对新情况进行优化的新策略集。作为一个用例,我们演示了我们的生成策略框架如何为人工智能模型训练选择最佳数据生成策略。策略是根据联盟环境中数据的可用性和可信度动态生成的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信