Maximum A-Posteriori Estimation in Linear Models With a Gaussian Model Matrix

Ido Nevat, A. Wiesel, Jinhong Yuan, Yonina C. Eldar
{"title":"Maximum A-Posteriori Estimation in Linear Models With a Gaussian Model Matrix","authors":"Ido Nevat, A. Wiesel, Jinhong Yuan, Yonina C. Eldar","doi":"10.1109/CISS.2007.4298274","DOIUrl":null,"url":null,"abstract":"We consider the Bayesian inference of a random Gaussian vector in a linear model with a Gaussian model matrix. We derive the maximum a-posteriori (MAP) estimator for this model and show that it can be found using a simple line search over a unimodal function that can be efficiently evaluated. Next, we discuss the application of this estimator in the context of near-optimal detection of near-Gaussian-digitally modulated signals and demonstrate through simulations that the MAP estimator outperforms the standard linear MMSE estimator in terms of mean square error (MSE) and bit error rate (BER).","PeriodicalId":151241,"journal":{"name":"2007 41st Annual Conference on Information Sciences and Systems","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 41st Annual Conference on Information Sciences and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISS.2007.4298274","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

We consider the Bayesian inference of a random Gaussian vector in a linear model with a Gaussian model matrix. We derive the maximum a-posteriori (MAP) estimator for this model and show that it can be found using a simple line search over a unimodal function that can be efficiently evaluated. Next, we discuss the application of this estimator in the context of near-optimal detection of near-Gaussian-digitally modulated signals and demonstrate through simulations that the MAP estimator outperforms the standard linear MMSE estimator in terms of mean square error (MSE) and bit error rate (BER).
高斯模型矩阵线性模型的最大后验估计
本文研究了具有高斯模型矩阵的线性模型中随机高斯向量的贝叶斯推理。我们推导了该模型的最大后验(MAP)估计量,并表明它可以通过对单峰函数的简单直线搜索找到,该函数可以有效地求值。接下来,我们讨论了该估计器在近高斯数字调制信号的近最优检测中的应用,并通过仿真证明了MAP估计器在均方误差(MSE)和误码率(BER)方面优于标准线性MMSE估计器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信