Nonlinear von Mises–Fisher Filtering Based on Isotropic Deterministic Sampling

Kailai Li, F. Pfaff, U. Hanebeck
{"title":"Nonlinear von Mises–Fisher Filtering Based on Isotropic Deterministic Sampling","authors":"Kailai Li, F. Pfaff, U. Hanebeck","doi":"10.1109/MFI49285.2020.9235260","DOIUrl":null,"url":null,"abstract":"We present a novel deterministic sampling approach for von Mises–Fisher distributions of arbitrary dimensions. Following the idea of the unscented transform, samples of configurable size are drawn isotropically on the hypersphere while preserving the mean resultant vector of the underlying distribution. Based on these samples, a von Mises–Fisher filter is proposed for nonlinear estimation of hyperspherical states. Compared with existing von Mises–Fisher-based filtering schemes, the proposed filter exhibits superior hyperspherical tracking performance.","PeriodicalId":446154,"journal":{"name":"2020 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","volume":"16 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MFI49285.2020.9235260","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

We present a novel deterministic sampling approach for von Mises–Fisher distributions of arbitrary dimensions. Following the idea of the unscented transform, samples of configurable size are drawn isotropically on the hypersphere while preserving the mean resultant vector of the underlying distribution. Based on these samples, a von Mises–Fisher filter is proposed for nonlinear estimation of hyperspherical states. Compared with existing von Mises–Fisher-based filtering schemes, the proposed filter exhibits superior hyperspherical tracking performance.
基于各向同性确定性采样的非线性von Mises-Fisher滤波
针对任意维的von Mises-Fisher分布,提出了一种新的确定性采样方法。根据unscented变换的思想,在超球上各向同性地绘制可配置大小的样本,同时保留底层分布的平均结果向量。在此基础上,提出了一种用于超球面状态非线性估计的von Mises-Fisher滤波器。与现有的基于von mises - fisher的滤波方案相比,该滤波器具有优越的超球面跟踪性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信