Data Selection for Improving Naturalness of TTS Voices Trained on Small Found Corpuses

Fang-Yu Kuo, S. Aryal, G. Degottex, S. Kang, P. Lanchantin, I. Ouyang
{"title":"Data Selection for Improving Naturalness of TTS Voices Trained on Small Found Corpuses","authors":"Fang-Yu Kuo, S. Aryal, G. Degottex, S. Kang, P. Lanchantin, I. Ouyang","doi":"10.1109/SLT.2018.8639642","DOIUrl":null,"url":null,"abstract":"This work investigates techniques that select training data from small, found corpuses in order to improve the naturalness of synthesized text-to-speech voices. The approach outlined in this paper examines different metrics to detect and reject segments of training data that can degrade the performance of the system. We conducted experiments on two small datasets extracted from Mandarin Chinese audiobooks that have different characteristics in terms of recording conditions, narrator, and transcriptions. We show that using a even smaller, yet carefully selected, set of data can lead to a text-to-speech system able to generate more natural speech than a system trained on the complete dataset. Three metrics related to the narrator’s articulation proposed in the paper give significant improvements in naturalness.","PeriodicalId":377307,"journal":{"name":"2018 IEEE Spoken Language Technology Workshop (SLT)","volume":"109 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Spoken Language Technology Workshop (SLT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT.2018.8639642","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

This work investigates techniques that select training data from small, found corpuses in order to improve the naturalness of synthesized text-to-speech voices. The approach outlined in this paper examines different metrics to detect and reject segments of training data that can degrade the performance of the system. We conducted experiments on two small datasets extracted from Mandarin Chinese audiobooks that have different characteristics in terms of recording conditions, narrator, and transcriptions. We show that using a even smaller, yet carefully selected, set of data can lead to a text-to-speech system able to generate more natural speech than a system trained on the complete dataset. Three metrics related to the narrator’s articulation proposed in the paper give significant improvements in naturalness.
提高小语料库TTS语音训练自然度的数据选择
这项工作研究了从小的、发现的语料库中选择训练数据的技术,以提高合成的文本到语音语音的自然度。本文概述的方法检查了不同的度量来检测和拒绝可能降低系统性能的训练数据片段。我们对从普通话有声读物中提取的两个小数据集进行了实验,这些数据集在记录条件、叙述者和转录方面具有不同的特征。我们表明,使用更小但精心选择的数据集可以使文本到语音系统能够生成比在完整数据集上训练的系统更自然的语音。本文提出的与叙述者发音相关的三个指标在自然度方面有显著改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信