High-Performance Visualization of Multi-Dimensional Gene Expression Data

M. Trutschl, P. Kilgore, U. Cvek
{"title":"High-Performance Visualization of Multi-Dimensional Gene Expression Data","authors":"M. Trutschl, P. Kilgore, U. Cvek","doi":"10.1109/ICNC.2012.20","DOIUrl":null,"url":null,"abstract":"Previous application of Kohonen's self organizing map to common visualizations has yielded promising results. In this research, we extend the classic two-dimensional scatter plot visualization algorithm into the third dimension by permitting competition to occur within a three-dimensional search space. This approach takes advantage of spatial memory and increases the intrinsic dimensionality of a widely used visualization technique. We also present a method of parallelizing this novel algorithm as a method of overcoming the runtime complexity associated with it using MPI. We note that this algorithm responds extremely well to parallelization and that it leads to an effective method for knowledge discovery in complex multidimensional datasets.","PeriodicalId":442973,"journal":{"name":"2012 Third International Conference on Networking and Computing","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Third International Conference on Networking and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2012.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Previous application of Kohonen's self organizing map to common visualizations has yielded promising results. In this research, we extend the classic two-dimensional scatter plot visualization algorithm into the third dimension by permitting competition to occur within a three-dimensional search space. This approach takes advantage of spatial memory and increases the intrinsic dimensionality of a widely used visualization technique. We also present a method of parallelizing this novel algorithm as a method of overcoming the runtime complexity associated with it using MPI. We note that this algorithm responds extremely well to parallelization and that it leads to an effective method for knowledge discovery in complex multidimensional datasets.
多维基因表达数据的高性能可视化
以前将Kohonen的自组织映射应用于常见的可视化已经产生了有希望的结果。在本研究中,我们通过允许在三维搜索空间内发生竞争,将经典的二维散点图可视化算法扩展到第三维。这种方法利用了空间记忆,增加了一种广泛使用的可视化技术的内在维度。我们还提出了一种并行化这种新算法的方法,作为一种克服与MPI相关的运行时复杂性的方法。我们注意到该算法对并行化的响应非常好,并且它为复杂多维数据集的知识发现提供了一种有效的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信