INTIMATE: a Web-based movie recommender using text categorization

Harry Mak, I. Koprinska, Josiah Poon
{"title":"INTIMATE: a Web-based movie recommender using text categorization","authors":"Harry Mak, I. Koprinska, Josiah Poon","doi":"10.1109/WI.2003.1241277","DOIUrl":null,"url":null,"abstract":"We present INTIMATE, a Web-based movie recommender that makes suggestions by using text categorization to learn from movie synopses. The performance of various feature representations, feature selectors, feature weighting mechanisms and classifiers is evaluated and discussed. INTIMATE was also compared with a feature-based movie recommender. The results show that the text-based approach outperforms the feature-based if the ratio of the number of user ratings to the vocabulary size is high.","PeriodicalId":403574,"journal":{"name":"Proceedings IEEE/WIC International Conference on Web Intelligence (WI 2003)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings IEEE/WIC International Conference on Web Intelligence (WI 2003)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WI.2003.1241277","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 42

Abstract

We present INTIMATE, a Web-based movie recommender that makes suggestions by using text categorization to learn from movie synopses. The performance of various feature representations, feature selectors, feature weighting mechanisms and classifiers is evaluated and discussed. INTIMATE was also compared with a feature-based movie recommender. The results show that the text-based approach outperforms the feature-based if the ratio of the number of user ratings to the vocabulary size is high.
一个基于网络的电影推荐,使用文本分类
我们介绍了一个基于网络的电影推荐器,它通过使用文本分类从电影大纲中学习来提出建议。对各种特征表示、特征选择器、特征加权机制和分类器的性能进行了评估和讨论。还将《亲密》与基于故事片的电影推荐进行了比较。结果表明,当用户评价数与词汇量之比较高时,基于文本的方法优于基于特征的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信