A GENERALIZATION OF SIERPINSKI THEOREM ON UNIQUE DETERMINING OF A SEPARATELY CONTINUOUS FUNCTION

V. Mykhaylyuk, O. Karlova
{"title":"A GENERALIZATION OF SIERPINSKI THEOREM ON UNIQUE DETERMINING OF A SEPARATELY CONTINUOUS FUNCTION","authors":"V. Mykhaylyuk, O. Karlova","doi":"10.31861/bmj2021.01.21","DOIUrl":null,"url":null,"abstract":"In 1932 Sierpi\\'nski proved that every real-valued separately continuous function defined on the plane $\\mathbb R^2$ is determined uniquely on any everywhere dense subset of $\\mathbb R^2$. Namely, if two separately continuous functions coincide of an everywhere dense subset of $\\mathbb R^2$, then they are equal at each point of the plane.\n\nPiotrowski and Wingler showed that above-mentioned results can be transferred to maps with values in completely regular spaces. They proved that if every separately continuous function $f:X\\times Y\\to \\mathbb R$ is feebly continuous, then for every completely regular space $Z$ every separately continuous map defined on $X\\times Y$ with values in $Z$ is determined uniquely on everywhere dense subset of $X\\times Y$. Henriksen and Woods proved that for an infinite cardinal $\\aleph$, an $\\aleph^+$-Baire space $X$ and a topological space $Y$ with countable $\\pi$-character every separately continuous function $f:X\\times Y\\to \\mathbb R$ is also determined uniquely on everywhere dense subset of $X\\times Y$. Later, Mykhaylyuk proved the same result for a Baire space $X$, a topological space $Y$ with countable $\\pi$-character and Urysohn space $Z$.\n\nMoreover, it is natural to consider weaker conditions than separate continuity. The results in this direction were obtained by Volodymyr Maslyuchenko and Filipchuk. They proved that if $X$ is a Baire space, $Y$ is a topological space with countable $\\pi$-character, $Z$ is Urysohn space, $A\\subseteq X\\times Y$ is everywhere dense set, $f:X\\times Y\\to Z$ and $g:X\\times Y\\to Z$ are weakly horizontally quasi-continuous, continuous with respect to the second variable, equi-feebly continuous wuth respect to the first one and such that $f|_A=g|_A$, then $f=g$.\n\n\nIn this paper we generalize all of the results mentioned above. Moreover, we analize classes of topological spaces wich are favorable for Sierpi\\'nsi-type theorems.","PeriodicalId":196726,"journal":{"name":"Bukovinian Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bukovinian Mathematical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31861/bmj2021.01.21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In 1932 Sierpi\'nski proved that every real-valued separately continuous function defined on the plane $\mathbb R^2$ is determined uniquely on any everywhere dense subset of $\mathbb R^2$. Namely, if two separately continuous functions coincide of an everywhere dense subset of $\mathbb R^2$, then they are equal at each point of the plane. Piotrowski and Wingler showed that above-mentioned results can be transferred to maps with values in completely regular spaces. They proved that if every separately continuous function $f:X\times Y\to \mathbb R$ is feebly continuous, then for every completely regular space $Z$ every separately continuous map defined on $X\times Y$ with values in $Z$ is determined uniquely on everywhere dense subset of $X\times Y$. Henriksen and Woods proved that for an infinite cardinal $\aleph$, an $\aleph^+$-Baire space $X$ and a topological space $Y$ with countable $\pi$-character every separately continuous function $f:X\times Y\to \mathbb R$ is also determined uniquely on everywhere dense subset of $X\times Y$. Later, Mykhaylyuk proved the same result for a Baire space $X$, a topological space $Y$ with countable $\pi$-character and Urysohn space $Z$. Moreover, it is natural to consider weaker conditions than separate continuity. The results in this direction were obtained by Volodymyr Maslyuchenko and Filipchuk. They proved that if $X$ is a Baire space, $Y$ is a topological space with countable $\pi$-character, $Z$ is Urysohn space, $A\subseteq X\times Y$ is everywhere dense set, $f:X\times Y\to Z$ and $g:X\times Y\to Z$ are weakly horizontally quasi-continuous, continuous with respect to the second variable, equi-feebly continuous wuth respect to the first one and such that $f|_A=g|_A$, then $f=g$. In this paper we generalize all of the results mentioned above. Moreover, we analize classes of topological spaces wich are favorable for Sierpi\'nsi-type theorems.
关于独立连续函数唯一确定的sierpinski定理的推广
1932年,Sierpi\ nski证明了在平面$\mathbb R^2$上定义的每一个实值独立连续函数在$\mathbb R^2$的任意处处稠密子集上是唯一确定的。也就是说,如果两个独立的连续函数重合于$\mathbb R^2$的处处密集子集,那么它们在平面上的每一点都相等。Piotrowski和Wingler证明了上述结果可以转移到具有完全正则空间值的映射上。他们证明了如果每一个独立连续函数$f:X\乘以Y$到$ mathbb R$是弱连续的,那么对于每一个完全正则空间$Z$,每一个定义在$X\乘以Y$上且值在$Z$上的独立连续映射在$X\乘以Y$的处处密集子集上是唯一确定的。Henriksen和Woods证明了对于无限基$\aleph$, $\aleph^+$-Baire空间$X$和具有可计数$\pi$-字符的拓扑空间$Y$,每个单独的连续函数$f:X\乘以Y$到$ mathbb R$在$X\乘以Y$的任何密集子集上也是唯一确定的。后来,Mykhaylyuk在Baire空间$X$、具有可数$\pi$-字符的拓扑空间$Y$和Urysohn空间$Z$上证明了同样的结果。此外,考虑比单独连续性更弱的条件是很自然的。这个方向的结果是由Volodymyr Maslyuchenko和Filipchuk得出的。他们证明了如果$X$是一个贝尔空间,$Y$是一个具有可数$\pi$-字符的拓扑空间,$Z$是Urysohn空间,$ a \子集X\乘以Y$处处是稠密集,$f:X\乘以Y\到Z$和$g:X\乘以Y\到Z$是弱水平拟连续的,对第二个变量是连续的,对第一个变量是等弱连续的,并且使得$f|_A=g|_A$,那么$f=g$。在本文中,我们推广了上述所有结果。此外,我们还分析了适合Sierpi 'nsi型定理的拓扑空间类别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信