{"title":"A multi-agent genetic algorithm for multi-period emergency resource scheduling problems in uncertain traffic network","authors":"Yawen Zhou, Jing Liu","doi":"10.1109/CEC.2017.7969294","DOIUrl":null,"url":null,"abstract":"With the frequent occurrence of large-scale disasters, such as landslide and earthquake, timely and effective emergency resource scheduling becomes more and more important. Lots of disasters need multi-period rescue to satisfy the demand of disaster areas. In order to find a better plan to achieve the multi-period disaster relief, in this paper, a multi-period emergency resource scheduling problem is solved using the multi-agent genetic algorithm (MAGA) considering the uncertainty of traffic. The experimental results show that multi-agent genetic algorithm is more effective than genetic algorithm (GA) for this problem and it has better convergence.","PeriodicalId":335123,"journal":{"name":"2017 IEEE Congress on Evolutionary Computation (CEC)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Congress on Evolutionary Computation (CEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2017.7969294","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
With the frequent occurrence of large-scale disasters, such as landslide and earthquake, timely and effective emergency resource scheduling becomes more and more important. Lots of disasters need multi-period rescue to satisfy the demand of disaster areas. In order to find a better plan to achieve the multi-period disaster relief, in this paper, a multi-period emergency resource scheduling problem is solved using the multi-agent genetic algorithm (MAGA) considering the uncertainty of traffic. The experimental results show that multi-agent genetic algorithm is more effective than genetic algorithm (GA) for this problem and it has better convergence.