Classification of Fake News on Facebook a Novel Social Network with K-Means Clustering Approach for Against Principal Component Analysis Method for Better Accuracy

R. Nomesh., Madderi Sivalingam Saravanan
{"title":"Classification of Fake News on Facebook a Novel Social Network with K-Means Clustering Approach for Against Principal Component Analysis Method for Better Accuracy","authors":"R. Nomesh., Madderi Sivalingam Saravanan","doi":"10.1109/ICOSEC54921.2022.9952063","DOIUrl":null,"url":null,"abstract":"To classify the fake news on Facebook using machine learning algorithms with improving accuracy. Materials and Methods: The Fake news classification implemented in the dataset is used to detect the exact real meaning of the content. In this research study the dataset is labelled as title, text, subject and date, these data are applied on the machine learning algorithms such as K-Means (KM) Clustering taken as group-1 and compared with Principal Component Analysis (PCA) algorithm taken as group-2 used for 80 percent of g power value and dataset used for this using 0.05 significant value and 95 percent of confidence interval also the standard deviation and error value are used. Results: The novel social network used for this research study with K-Means clustering and PCA algorithms and predicted best algorithm for better accuracy.","PeriodicalId":221953,"journal":{"name":"2022 3rd International Conference on Smart Electronics and Communication (ICOSEC)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 3rd International Conference on Smart Electronics and Communication (ICOSEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOSEC54921.2022.9952063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

To classify the fake news on Facebook using machine learning algorithms with improving accuracy. Materials and Methods: The Fake news classification implemented in the dataset is used to detect the exact real meaning of the content. In this research study the dataset is labelled as title, text, subject and date, these data are applied on the machine learning algorithms such as K-Means (KM) Clustering taken as group-1 and compared with Principal Component Analysis (PCA) algorithm taken as group-2 used for 80 percent of g power value and dataset used for this using 0.05 significant value and 95 percent of confidence interval also the standard deviation and error value are used. Results: The novel social network used for this research study with K-Means clustering and PCA algorithms and predicted best algorithm for better accuracy.
基于k均值聚类方法的Facebook虚假新闻分类与主成分分析方法的比较
使用机器学习算法对Facebook上的假新闻进行分类,并提高准确性。材料与方法:利用数据集中实现的假新闻分类来检测内容的准确真实含义。在本研究中,数据集被标记为标题,文本,主题和日期,这些数据被应用于机器学习算法,如K-Means (KM)聚类作为第1组,并与主成分分析(PCA)算法作为第2组进行比较,使用80%的g功率值和数据集用于此,使用0.05显著值和95%的置信区间,还使用标准差和误差值。结果:本研究使用的新型社会网络采用K-Means聚类和PCA算法,并预测出准确率较高的最佳算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信