Cartesian Tracking for Advanced Driver Assistance Imaging Radar Systems

Filip Rosu
{"title":"Cartesian Tracking for Advanced Driver Assistance Imaging Radar Systems","authors":"Filip Rosu","doi":"10.1109/COMM48946.2020.9142023","DOIUrl":null,"url":null,"abstract":"This paper presents an approach of using the Kalman Filter to track automotive radar detections in Cartesian space, useful for Radar-Vision fusion. A typical automotive radar would extract, for every detection, its respective range, radial velocity and Direction of Arrival. The problem at hand is that having no information on the Direction of Displacement, one cannot uniquely map the measurements to cartesian coordinates, which is required for the prediction step of the Kalman Filter. The proposed method uses Recursive Error Division filters and a stability-controlled feedback loop to iteratively estimate the DoD, making Cartesian tracking possible.","PeriodicalId":405841,"journal":{"name":"2020 13th International Conference on Communications (COMM)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 13th International Conference on Communications (COMM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMM48946.2020.9142023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents an approach of using the Kalman Filter to track automotive radar detections in Cartesian space, useful for Radar-Vision fusion. A typical automotive radar would extract, for every detection, its respective range, radial velocity and Direction of Arrival. The problem at hand is that having no information on the Direction of Displacement, one cannot uniquely map the measurements to cartesian coordinates, which is required for the prediction step of the Kalman Filter. The proposed method uses Recursive Error Division filters and a stability-controlled feedback loop to iteratively estimate the DoD, making Cartesian tracking possible.
高级驾驶员辅助成像雷达系统的笛卡尔跟踪
本文提出了一种利用卡尔曼滤波在笛卡尔空间跟踪汽车雷达探测的方法,对雷达-视觉融合很有帮助。典型的汽车雷达会为每个探测提取其各自的距离、径向速度和到达方向。手头的问题是,没有关于位移方向的信息,人们不能唯一地将测量映射到笛卡尔坐标,这是卡尔曼滤波器预测步骤所需要的。该方法使用递归误差分割滤波器和稳定控制反馈回路来迭代估计DoD,使笛卡尔跟踪成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信