IRF: interactive recommendation through dialogue

O. Alkan, Massimiliano Mattetti, E. Daly, A. Botea, Inge Vejsbjerg
{"title":"IRF: interactive recommendation through dialogue","authors":"O. Alkan, Massimiliano Mattetti, E. Daly, A. Botea, Inge Vejsbjerg","doi":"10.1145/3298689.3346966","DOIUrl":null,"url":null,"abstract":"Recent research focuses beyond recommendation accuracy, towards human factors that influence the acceptance of recommendations, such as user satisfaction, trust, transparency and sense of control. We present a generic interactive recommender framework that can add interaction functionalities to non-interactive recommender systems. We take advantage of dialogue systems to interact with the user and we design a middleware layer to provide the interaction functions, such as providing explanations for the recommendations, managing users' preferences learnt from dialogue, preference elicitation and refining recommendations based on learnt preferences.","PeriodicalId":215384,"journal":{"name":"Proceedings of the 13th ACM Conference on Recommender Systems","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 13th ACM Conference on Recommender Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3298689.3346966","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Recent research focuses beyond recommendation accuracy, towards human factors that influence the acceptance of recommendations, such as user satisfaction, trust, transparency and sense of control. We present a generic interactive recommender framework that can add interaction functionalities to non-interactive recommender systems. We take advantage of dialogue systems to interact with the user and we design a middleware layer to provide the interaction functions, such as providing explanations for the recommendations, managing users' preferences learnt from dialogue, preference elicitation and refining recommendations based on learnt preferences.
IRF:通过对话进行互动推荐
最近的研究不仅关注推荐的准确性,还关注影响推荐接受度的人为因素,如用户满意度、信任度、透明度和控制感。我们提出了一个通用的交互式推荐框架,它可以在非交互式推荐系统中添加交互功能。我们利用对话系统与用户进行交互,并设计了一个中间件层来提供交互功能,例如为推荐提供解释、管理从对话中学习到的用户偏好、偏好提取以及基于学习到的偏好提炼推荐。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信