{"title":"Synchronizing Constrained Horn Clauses","authors":"D. Mordvinov, Grigory Fedyukovich","doi":"10.29007/gr5c","DOIUrl":null,"url":null,"abstract":"Simultaneous occurrences of multiple recurrence relations in a system of non-linear constrained Horn clauses are crucial for proving its satisfiability. A solution of such system is often inexpressible in the constraint language. We propose to synchronize recurrent computations, thus increasing the chances for a solution to be found. We introduce a notion of CHC product allowing to formulate a lightweight iterative algorithm of merging recurrent computations into groups and prove its soundness. The evaluation over a set of systems handling lists and linear integer arithmetic confirms that the transformed systems are drastically more simple to solve than the original ones.","PeriodicalId":207621,"journal":{"name":"Logic Programming and Automated Reasoning","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Logic Programming and Automated Reasoning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29007/gr5c","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24
Abstract
Simultaneous occurrences of multiple recurrence relations in a system of non-linear constrained Horn clauses are crucial for proving its satisfiability. A solution of such system is often inexpressible in the constraint language. We propose to synchronize recurrent computations, thus increasing the chances for a solution to be found. We introduce a notion of CHC product allowing to formulate a lightweight iterative algorithm of merging recurrent computations into groups and prove its soundness. The evaluation over a set of systems handling lists and linear integer arithmetic confirms that the transformed systems are drastically more simple to solve than the original ones.