Emotion Recognition from Masked Faces using Inception-v3

Ashi Agarwal, Seba Susan
{"title":"Emotion Recognition from Masked Faces using Inception-v3","authors":"Ashi Agarwal, Seba Susan","doi":"10.1109/RAIT57693.2023.10126777","DOIUrl":null,"url":null,"abstract":"The identification of human emotions from facial expressions is intriguing and challenging research given the subtle differences between certain emotions. Face masks are nowadays strongly recommended to minimize infection transmission due to Covid-19. Successful emotion identification from masked faces is challenging since the lower part of the face contributes significant cues for emotion identification. In this work, we investigate transfer learning using deep pre-trained networks for emotion recognition from masked faces. Specifically, we fine-tune the pre-trained models: - EfficientNet-BO, ResNet-50, Inception-v3, Xception and AlexNet, on the benchmark Facial Expression Recognition (FER) 2013 dataset containing seven categories of emotions, namely, angry, disgust, fear, happy, sad, surprise and neutral. The experiments reveal that the Inception-v3 model outperformed all other deep learning models and the machine learning models Support Vector Machine (SVM) and Artificial Neural Network (ANN), for facial emotion recognition from masked faces.","PeriodicalId":281845,"journal":{"name":"2023 5th International Conference on Recent Advances in Information Technology (RAIT)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 5th International Conference on Recent Advances in Information Technology (RAIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RAIT57693.2023.10126777","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The identification of human emotions from facial expressions is intriguing and challenging research given the subtle differences between certain emotions. Face masks are nowadays strongly recommended to minimize infection transmission due to Covid-19. Successful emotion identification from masked faces is challenging since the lower part of the face contributes significant cues for emotion identification. In this work, we investigate transfer learning using deep pre-trained networks for emotion recognition from masked faces. Specifically, we fine-tune the pre-trained models: - EfficientNet-BO, ResNet-50, Inception-v3, Xception and AlexNet, on the benchmark Facial Expression Recognition (FER) 2013 dataset containing seven categories of emotions, namely, angry, disgust, fear, happy, sad, surprise and neutral. The experiments reveal that the Inception-v3 model outperformed all other deep learning models and the machine learning models Support Vector Machine (SVM) and Artificial Neural Network (ANN), for facial emotion recognition from masked faces.
基于Inception-v3的蒙面表情识别
鉴于某些情绪之间的微妙差异,从面部表情中识别人类情绪是一项有趣且具有挑战性的研究。现在强烈建议戴口罩,以尽量减少Covid-19引起的感染传播。成功识别蒙面人脸的情绪是具有挑战性的,因为面部的下半部对情绪识别有重要的线索。在这项工作中,我们使用深度预训练网络来研究迁移学习,以从蒙面人脸中识别情感。具体来说,我们对预先训练的模型进行了微调:- EfficientNet-BO, ResNet-50, Inception-v3, Xception和AlexNet,基于基准面部表情识别(FER) 2013数据集,该数据集包含七种情绪,即愤怒,厌恶,恐惧,快乐,悲伤,惊讶和中性。实验表明,Inception-v3模型在面部情绪识别方面优于所有其他深度学习模型和机器学习模型支持向量机(SVM)和人工神经网络(ANN)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信