Klara Nosan, Amaury Pouly, S. Schmitz, M. Shirmohammadi, J. Worrell
{"title":"On the Computation of the Zariski Closure of Finitely Generated Groups of Matrices","authors":"Klara Nosan, Amaury Pouly, S. Schmitz, M. Shirmohammadi, J. Worrell","doi":"10.1145/3476446.3536172","DOIUrl":null,"url":null,"abstract":"We investigate the complexity of computing the Zariski closure of a finitely generated group of matrices. The Zariski closure was previously shown to be computable by Derksen, Jeandel, and Koiran, but the termination argument for their algorithm appears not to yield any complexity bound. In this paper we follow a different approach and obtain a bound on the degree of the polynomials that define the closure. Our bound shows that the closure can be computed in elementary time. We also obtain upper bounds on the length of chains of linear algebraic groups.","PeriodicalId":130499,"journal":{"name":"Proceedings of the 2022 International Symposium on Symbolic and Algebraic Computation","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 International Symposium on Symbolic and Algebraic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3476446.3536172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
We investigate the complexity of computing the Zariski closure of a finitely generated group of matrices. The Zariski closure was previously shown to be computable by Derksen, Jeandel, and Koiran, but the termination argument for their algorithm appears not to yield any complexity bound. In this paper we follow a different approach and obtain a bound on the degree of the polynomials that define the closure. Our bound shows that the closure can be computed in elementary time. We also obtain upper bounds on the length of chains of linear algebraic groups.