{"title":"Variational Principles for Non-Material Systems Within an Arbitrary Lagrangian Eulerian Description of Motion","authors":"G. Pennisi, O. Bauchau","doi":"10.1115/detc2020-22494","DOIUrl":null,"url":null,"abstract":"\n Dynamics of axially moving continua, such as beams, cables and strings, can be modeled by use of an Arbitrary La-grangian Eulerian (ALE) approach. Within a Finite Element framework, an ALE element is indeed a non-material system, i.e. a mass flow occurs at its boundaries. This article presents the dynamic description of such systems and highlights the peculiarities that arise when applying standard mechanical principles to non-material systems. Starting from D’Alembert’s principle, Hamilton’s principle and Lagrange’s equations for a non-material system are derived and the significance of the additional transport terms discussed. Subsequently, the numerical example of a length-changing beam is illustrated. Energetic considerations show the complex dynamic behavior non-material systems might exhibit.","PeriodicalId":236538,"journal":{"name":"Volume 2: 16th International Conference on Multibody Systems, Nonlinear Dynamics, and Control (MSNDC)","volume":"112 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2: 16th International Conference on Multibody Systems, Nonlinear Dynamics, and Control (MSNDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/detc2020-22494","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Dynamics of axially moving continua, such as beams, cables and strings, can be modeled by use of an Arbitrary La-grangian Eulerian (ALE) approach. Within a Finite Element framework, an ALE element is indeed a non-material system, i.e. a mass flow occurs at its boundaries. This article presents the dynamic description of such systems and highlights the peculiarities that arise when applying standard mechanical principles to non-material systems. Starting from D’Alembert’s principle, Hamilton’s principle and Lagrange’s equations for a non-material system are derived and the significance of the additional transport terms discussed. Subsequently, the numerical example of a length-changing beam is illustrated. Energetic considerations show the complex dynamic behavior non-material systems might exhibit.