Y. V. Pehlivanoglu, I. Bekmezci, Perihan Pehlivanoğlu
{"title":"Efficient Strategy for Multi-UAV Path Planning in Target Coverage Problems","authors":"Y. V. Pehlivanoglu, I. Bekmezci, Perihan Pehlivanoğlu","doi":"10.1109/ICTACSE50438.2022.10009728","DOIUrl":null,"url":null,"abstract":"In recent years, multi unmanned aerial vehicles (UAVs) are used in the same system to accomplish more complex missions. In many multi-UAV system applications, the main objective is to visit some predetermined checkpoints in operational area. If the number of check points and constraints increases, finding a feasible solution takes up too much time. In this paper, a checkpoint based multi-UAV path planning problem is solved by using improved genetic algorithm. The main contributions of this paper are: (1) the introducing revisit time interval concept, (2) the investigating of the effect of objective function description, and (3) looking into an outcome of using multiple runways on optimal multi-UAV path planning. The proposed strategy-based optimization methodology is performed for checkpoint based multi-UAV path planning problems in two-dimensional (2D) environment. Performance results show that the proposed strategy provides effective and feasible paths for each UAV.","PeriodicalId":301767,"journal":{"name":"2022 International Conference on Theoretical and Applied Computer Science and Engineering (ICTASCE)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Theoretical and Applied Computer Science and Engineering (ICTASCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTACSE50438.2022.10009728","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, multi unmanned aerial vehicles (UAVs) are used in the same system to accomplish more complex missions. In many multi-UAV system applications, the main objective is to visit some predetermined checkpoints in operational area. If the number of check points and constraints increases, finding a feasible solution takes up too much time. In this paper, a checkpoint based multi-UAV path planning problem is solved by using improved genetic algorithm. The main contributions of this paper are: (1) the introducing revisit time interval concept, (2) the investigating of the effect of objective function description, and (3) looking into an outcome of using multiple runways on optimal multi-UAV path planning. The proposed strategy-based optimization methodology is performed for checkpoint based multi-UAV path planning problems in two-dimensional (2D) environment. Performance results show that the proposed strategy provides effective and feasible paths for each UAV.